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A B S T R A C T

Silicon photomultipliers, thanks to their excellent performance, robustness and relatively simple use, are the
photon-detectors of choice for many present and future applications. This paper gives an overview of methods
to characterise SiPMs. The different SiPM parameters are introduced and generic setups for their determination
presented. Finally, ways to extract the parameters from the measurements are discussed and the results shown.
If a parameter can be obtained from different measurements, the results are compared and recommendations
given, which is considered to be the most reliable. The characterisation of SiPMs, in particular for high light
intensities and in high radiation fields, is presently a field of intensive research with many open questions and
problems which will be discussed.
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1. Introduction

In this contribution an overview of different methods of char-
acterising SiPMs is given. After a short discussion of the most rel-
evant parameters and their relation to the electrical parameters of
SiPMs, generic measurement setups are presented. Finally, methods
how the SiPM parameters can be determined with the different setups
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are presented, and their advantages, disadvantages and limitations
discussed.

Several groups have developed methods of characterising SiPMs and
most of them are well documented in publications. As it is not possible
to do justice to all this work, only generic setups and analysis methods
are presented. One complication is that the different groups use different
symbols for the technical terms. In addition, these are not always clearly
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Table 1
Parameters and symbols used for the characterisation of SiPMs. The measurement methods are 𝐼𝑓 −𝑉 and 𝐼𝑟−𝑉
for the forward and reverse 𝐼 − 𝑉 measurement, 𝑇 𝑟𝑎𝑛𝑠 for the current-transient measurement, and 𝑄 for the
spectra obtained either by integrating the transients or from the maximum of the pulse of the transient, or from
the charge recorded with a charge-to-digital converter.
Symbol Parameter Measurement

𝑉𝑏𝑖𝑎𝑠 Bias voltage –
𝑉𝑏𝑑 Breakdown voltage 𝐼𝑟 − 𝑉
𝑉𝑜𝑓𝑓 Turnoff voltage 𝑄
𝑉𝑂𝑉 = 𝑉𝑏𝑖𝑎𝑠 − 𝑉𝑏𝑑 Overvoltage 𝐼𝑟 − 𝑉
𝐼𝑑𝑎𝑟𝑘 Dark current 𝐼𝑟 − 𝑉
𝐼𝑙𝑖𝑔ℎ𝑡 Current with illumination 𝐼𝑟 − 𝑉
𝐼𝑝ℎ𝑜𝑡𝑜 = 𝐼𝑙𝑖𝑔ℎ𝑡 − 𝐼𝑑𝑎𝑟𝑘 Photo current 𝐼𝑟 − 𝑉
𝑄 Measured charge (amplitude) 𝑄
⟨𝑄⟩ Mean 𝑄 𝑄
𝜎2
𝑄 Variance of 𝑄 𝑄

𝑁𝑝𝑖𝑥 , (𝑁𝑡𝑜𝑡𝑎𝑙) Number of pixels –
𝑅𝑞 Quenching resistance 𝐼𝑓 − 𝑉 , 𝐶 − 𝑉
𝐶𝑞 Quenching capacitance 𝐶 − 𝑉
𝐶𝑑 , (𝐶𝑝𝑖𝑥) Pixel capacitance 𝐶 − 𝑉 ,𝑄
𝑅𝑠 Shunt resistor readout –
𝐼𝑑𝑖𝑠𝑐 Pixel discharge current –
𝑅𝑑 Pixel discharge resistor –
𝑉𝑑 Voltage drop over pixel –
𝐶𝑒𝑞 = 𝑁𝑝𝑖𝑥(1∕𝐶𝑑 + 1∕𝐶𝑞 )−1 Capacitance seen by readout –
𝜏𝑖𝑛 = 𝑅𝑠 ⋅ 𝐶𝑒𝑞 Time const. fast component 𝑇 𝑟𝑎𝑛𝑠
𝜏𝑟 = 𝑅𝑞 ⋅ (𝐶𝑑 + 𝐶𝑞 ) Recharging time const. 𝑇 𝑟𝑎𝑛𝑠
𝐺 = (𝑉𝑏𝑖𝑎𝑠 − 𝑉𝑜𝑓𝑓 )(𝐶𝑑 + 𝐶𝑞 )∕𝑞0 SiPM overall gain 𝑇 𝑟𝑎𝑛𝑠, 𝑄
𝑓𝑄 Fraction SiPM signal recorded 𝑇 𝑟𝑎𝑛𝑠, 𝑄
𝐺∗ = 𝐺 ⋅ 𝑓𝑄 Measured gain 𝑄

𝑁𝛾 Number of photons on SiPM –
𝑃𝐷𝐸 = 𝐹𝐹 ⋅𝑄𝐸 ⋅ 𝑃𝑇 Photon-detection efficiency 𝑄, 𝑇 𝑟𝑎𝑛𝑠
𝑃𝐷𝐸0 𝑃𝐷𝐸 in linear range (low 𝑁𝛾 ) 𝑄, 𝑇 𝑟𝑎𝑛𝑠
𝐹𝐹 Fill factor –
𝑄𝐸 Quantum efficiency –
𝑃𝑇 Geiger breakdown probability –
𝑃𝑇 , 𝑝ℎ𝑜𝑡𝑜 𝑃𝑇 for photons –
𝑁𝐺 Number Geiger discharges 𝑄
𝑁𝑝𝐺 Number primary Geiger discharges 𝑄
𝑁𝑝𝐺, 𝑝ℎ𝑜𝑡𝑜 𝑁𝑝𝐺 due to photons 𝑄
pe Unit Geiger discharges, (photo-electrons) 𝑇 𝑟𝑎𝑛𝑠, 𝑄
𝑓0 Fraction events in 𝑁𝐺 = 0 peak 𝑄
𝑓0, 𝑑𝑎𝑟𝑘 𝑓0 in the dark 𝑄
𝑓0, 𝑙𝑖𝑔ℎ𝑡 𝑓0 with light 𝑄
𝑓0.5 Fraction events above 0.5 pe 𝑄
𝑓1.5 Fraction events above 1.5 pe 𝑄

𝐷𝐶𝑅 Dark count rate 𝐼𝑟 − 𝑉 , 𝑄, 𝑇 𝑟𝑎𝑛𝑠
𝐷𝐶𝑅𝑝 Primary 𝐷𝐶𝑅 𝐼𝑟 − 𝑉 , 𝑄, 𝑇 𝑟𝑎𝑛𝑠
𝑃𝑝𝐶𝑇 Probability prompt cross-talk 𝑄, 𝑇 𝑟𝑎𝑛𝑠
𝑃𝑑𝐶𝑇 Probability delayed cross-talk 𝑄, 𝑇 𝑟𝑎𝑛𝑠
𝑃𝐴𝑃 After-pulse probability 𝑄, 𝑇 𝑟𝑎𝑛𝑠
𝐸𝐶𝐹 Excess charge factor 𝑄
𝐸𝑁𝐹 Excess noise factor 𝑄
𝐿𝑖𝑛 Linearity 𝑄
𝑁𝐿𝑖𝑛 = 1 − 𝐿𝑖𝑛 Non-linearity 𝑄
𝐷𝑅 Dynamic range 𝑄
𝑅𝑒𝑠 = ⟨𝑄(𝑁𝛾 )⟩∕𝑁𝛾 Responsivity 𝑄

defined. The next section is an attempt to give clear definitions and to
summarise the symbols used in this paper in a table. Clearly a common
nomenclature is more than welcome, and efforts towards this goal are
important for the advancement of the field [1].

The emphasis of the paper is on the characterisation of Analog SiPMs,
on which most of the work has been done so far. This in no way means
that the development of Digital SiPMs is not appreciated by the author.
In fact the opposite is true, and given the impressive developments of
microelectronics and 3-D integration, Digital SiPMs may well surpass in
the future Analog SiPMs in many applications.

The paper does not cover the excellent timing performance of SiPMs
and its measurements, which however is discussed in other articles of
this Special Issue [2–5].

As this is a review paper, most of the results are based on discussions
with colleagues or on published papers, for which the sources are
quoted. If no reference is given, the results are from measurements

by members of the Hamburg Detector Laboratory with the analysis
performed by the author. Most of these studies used SiPMs produced
by KETEK, as for these devices we have access to the technological
information to perform simulations.

2. SiPM parameters

Silicon Photomultipliers, also referred to as SiPM (Silicon photomul-
tiplier or Silicon Photo Multiplier), MPPC (Multi Pixel Photon Counter)
or G-APD (Geiger Mode Avalanche Photo Diode, which however is
mainly used for single pixel devices) are two dimensional arrays of
100 to several 10 000 single photon avalanche diodes (SPAD), called
pixels, with typical dimensions between 10 μm × 10 μm and 100 μm ×
100 μm. The pixels are operated in limited Geiger mode and every
pixel gives approximately the same signal, independent of the number
of photons which have produced simultaneously electron–hole pairs in
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Fig. 1. (a) Example of a possible cross section of a single pixel of a SiPM. 𝑅𝑞 represents the quenching resistance, and Al the biasing grid. (b) Electrical model for voltages above the
breakdown voltage, 𝑉𝑏𝑑 , of a SiPM with 𝑁𝑝𝑖𝑥 pixels and a single Geiger discharge. 𝐼𝑑𝑖𝑠𝑐 (𝑡) represents the discharge current of the pixel by the Geiger discharge, described by a switch and
the resistor 𝑅𝑑 . 𝐼𝑑𝑖𝑠𝑐 (𝑡) can also be simulated by a current source with a time-dependent current. 𝐶𝑔𝑟𝑖𝑑 is the capacitance between the Al-grid which connects the individual pixels to the
bias voltage and the substrate. The shunt resistor 𝑅𝑠 converts the current signal into a voltage, which is sensed by the readout. Most of the simulations found in the literature use a model
with a voltage source (𝑉 = 𝑉𝑏𝑑 ) in series with switch 𝑆 and the resistor 𝑅𝑑 . For an explanation of the other symbols, see text.

the amplification region of the pixel. The sum of the pixel signals is
proportional to the number of pixels with Geiger discharges, from which
the number of incident photons is deduced. As the output charge for a
single Geiger discharge is typically larger than 105 elementary charges,
0, 1, 2, and more Geiger discharges can be easily distinguished, enabling
the detection of single optical photons with high efficiency and sub-
nanosecond timing.

Two types of SiPMs have been developed: Analog and Digital.
In Analog SiPMs the individual SPADs are connected via quenching
resistors to a common readout and the SiPM delivers the summed analog
signal. In Digital SiPMs each pixel has its own quenching circuit and
a digital switch to a multi-channel readout system. The output is the
digitised pulse height and precise time information for the pixels with
Geiger discharges. Digital SiPMs also allow disabling pixels with high
dark-count rates.

The basic functioning of a SiPM, as well as the terms required for
its description are explained with the help of Fig. 1, which shows an
example of a possible cross section of a single pixel and the electrical
diagram used by the author to simulate the pulses for a SiPM with 𝑁𝑝𝑖𝑥
pixels. More realistic pixel layouts are discussed in Ref. [3]. Different
to Fig. 1b, in most of the literature (e.g. Refs. [2–4]) a voltage source
with a value of the break-down voltage is implemented in series with the
switch 𝑆 and the resistance 𝑅𝑑 , or more general, the switch 𝑆 and the
resistor 𝑅𝑑 are replaced by a time dependent current source. Which of
the models is the more appropriate one, is at present an open question.

The terms used and the corresponding symbols are summarised in
Table 1. Fig. 2 shows examples of pulses from single Geiger discharges
for a SiPM from KETEK with (a) a pixel size of 25 μm, and (b) of 50 μm.

Each pixel is connected to the power supply (𝑉𝑏𝑖𝑎𝑠) by the quenching
resistance 𝑅𝑞 . Parallel to 𝑅𝑞 there is a capacitance 𝐶𝑞 . It is the parasitic
capacitance of the quenching resistor to the Si-bulk of the pixel and can
be intentionally increased to produce a narrow initial pulse allowing a
better signal extraction. The capacitance of the diode corresponding to
a single pixel is denoted by 𝐶𝑑 . 𝑅𝑠 is the shunt resistor which converts
the current signal into a voltage, which is sensed by the readout. The
photon enters the SiPM through a window, which is typically covered
by an anti-reflective coating (ARC). The ratio of the area of the entrance
window to the pixel area is usually called fill factor, 𝐹𝐹 .

The SiPM is biased by a voltage 𝑉𝑂𝑉 above the breakdown voltage
𝑉𝑏𝑑 : 𝑉𝑂𝑉 = 𝑉𝑏𝑖𝑎𝑠 − 𝑉𝑏𝑑 . In the quiescent state no current flows through
𝑅𝑞 and the voltage over the pixel is 𝑉𝑑 = 𝑉𝑏𝑖𝑎𝑠. An 𝑒ℎ (electron hole)
pair, produced either thermally, by a photon or by ionising radiation,
initiates with the trigger probability 𝑃𝑇 a Geiger discharge by avalanche
multiplication. 𝑃𝑇 is a function of the position where the 𝑒ℎ pair is
generated. A quantitative model for this dependence is given in Ref.
[6]. The discharge takes place through a narrow (≈ 10 μm diameter)
micro-plasma tube until the turn-off voltage 𝑉𝑜𝑓𝑓 is reached, when the
multiplication is too low to maintain the micro-plasma. In the electrical

model shown in Fig. 1b the switch 𝑆 is closed at the start of the Geiger
discharge, 𝐶𝑑 is discharged through 𝑅𝑑 , and the switch opens when
𝑉𝑑 = 𝑉𝑜𝑓𝑓 . The observed differences 𝑉𝑏𝑑 − 𝑉𝑜𝑓𝑓 are small (< 1 V) and
frequently compatible with zero, and in most of the literature just 𝑉𝑏𝑑
is used. The only paper which reports a significant difference is Ref.
[7], and Ref. [8] presents a model calculation of a Geiger discharge and
derives a formula for 𝑉𝑏𝑑−𝑉𝑜𝑓𝑓 . The time constant of the pixel discharge
is short compared to 1 ns. It is responsible for the fast rise time of the
output pulse seen in Fig. 2b. As discussed in Refs. [9,10] the decay of
the measured pulse has two time constants: a fast one 𝜏𝑖𝑛 ≈ 𝑅𝑠 ⋅ 𝐶𝑒𝑞
and a slower one 𝜏𝑟 = 𝑅𝑞 ⋅ (𝐶𝑑 + 𝐶𝑞). 𝜏𝑟 describes the recharging of the
pixel after the switch 𝑆 in Fig. 1b has opened at the end of the Geiger
discharge. 𝜏𝑖𝑛 is associated with the shunt resistance 𝑅𝑠 and the total
capacitance 𝐶𝑒𝑞 ≈ 𝑁𝑝𝑖𝑥

(

1∕𝐶𝑑 + 1∕𝐶𝑞
)−1 seen by the amplifier. The total

charge of the SiPM pulse is 𝑄 = (𝑉𝑏𝑖𝑎𝑠 −𝑉𝑜𝑓𝑓 ) ⋅ (𝐶𝑑 +𝐶𝑞), and the voltage
at the peak 𝑉𝑚𝑎𝑥 ≈ (𝑄∕𝐶𝑒𝑞) ⋅

(

𝐶𝑞∕(𝐶𝑞 +𝐶𝑑 )
)

. The latter formula assumes
that the bandwidth of the readout is sufficiently high not to degrade the
signal, which is a quite challenging requirement. From Fig. 2 one sees
that, contrary to the SiPM with 50 μm pixels, there is no evidence for
a fast component for the 25 μm SiPM. It is concluded that in the latter
case 𝐶𝑞 ≪ 𝐶𝑑 .

A parameter which is of particular relevance for the characterisation
of SiPMs is the gain

𝐺 =
(𝐶𝑑 + 𝐶𝑞) ⋅ (𝑉𝑏𝑖𝑎𝑠 − 𝑉𝑜𝑓𝑓 )

𝑞0
and 𝐺∗ = 𝐺 ⋅ 𝑓𝑄, (1)

The elementary charge is denoted 𝑞0. If the entire signal is integrated,
the gain is 𝐺. An integration window which is shorter than the pulse or
pulse shaping by the readout electronics, result in a gain, 𝐺∗, which is
reduced by a factor 𝑓𝑄 ≤ 1.

As shown in Fig. 3, SiPM charge spectra measured in the dark and
with low-intensity pulsed light, show peaks which correspond to 𝑁𝐺, the
number of pixels with Geiger discharges. The lowest peak corresponds
to 𝑁𝐺 = 0, and the following to 𝑁𝐺 = 1, 2, etc., with the distance
between the peaks 𝑞0 ⋅ 𝐺∗. Following the convention from vacuum
photomultipliers, it is customary to show charge spectra in units of
photo-electrons (pe), by scaling the Q axis by 1∕(𝑞0 ⋅ 𝐺∗) and shifting
the scale so that the 𝑁𝐺 = 0 peak is at zero. As a result the 𝑁𝐺 = 1, 2,
. . . 𝑖 peaks are at pe = 1, 2, . . . 𝑖, independent of the value of 𝑓𝑄. This is
also valid if, instead of the charge, the amplitude of the SiPM signal is
analysed.

Another important parameter of a photon detector is the photon-
detection efficiency, 𝑃𝐷𝐸. For a SiPM it is defined as the ratio of
primary Geiger discharges due to the photons, 𝑁𝑝𝐺, 𝑝ℎ𝑜𝑡𝑜, to the number
of photons hitting the SiPM, 𝑁𝛾 :

𝑃𝐷𝐸 =
⟨𝑁𝑝𝐺, 𝑝ℎ𝑜𝑡𝑜⟩

⟨𝑁𝛾 ⟩
= 𝐹𝐹 ⋅𝑄𝐸(𝜆) ⋅ 𝑃𝑇 (𝑉𝑏𝑖𝑎𝑠, 𝜆), (2)
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Fig. 2. Pulse shape of a single Geiger discharge for (a) KETEK SiPM with 25 μm, and (b) 50 μm pixel size, measured at 𝑉𝑏𝑖𝑎𝑠 = 33.5 V (colour online).

Fig. 3. (a) Charge spectra measured using a KETEK SiPM with a pixel size of 15 μm at 𝑉𝑏𝑖𝑎𝑠 = 33 V (a) in the dark, and (b) with sub-nanosecond laser light. The figures are taken from
Ref. [11]. In (a), Fit 1 considers only single dark counts randomly distributed in time without correlated noise, whereas for Fit 2 correlated noise and multiple dark counts are included
in the model fitted to the data. In (b) the fit function takes into account electronics noise, prompt and delayed correlated noise and gain fluctuations, but not dark counts.

where 𝐹𝐹 is the fill factor (ratio of sensitive area to total area), 𝑄𝐸 the
efficiency of a photon with wavelength 𝜆 entering the sensitive SiPM
volume and producing an 𝑒ℎ pair there, and 𝑃𝑇 the probability that
the 𝑒ℎ pair triggers a Geiger discharge. A primary Geiger discharge can
produce correlated secondary Geiger discharges, which can be described
by the excess charge factor, 𝐸𝐶𝐹 , and the excess noise factor, 𝐸𝑁𝐹 ,
which are defined below. From the measured mean charge ⟨𝑄⟩, the
number of primary Geiger discharges, 𝑁𝑝𝐺, can be obtained using:

⟨𝑁𝑝𝐺⟩ =
⟨𝑄⟩

𝑞0 ⋅ 𝐺∗ ⋅ 𝐸𝐶𝐹
. (3)

For an absolute determination of 𝑃𝐷𝐸 the absolute value of ⟨𝑁𝛾 ⟩, 𝐺∗

and 𝐸𝐶𝐹 have to be known. The relative dependence of 𝑃𝐷𝐸(𝑉𝑏𝑖𝑎𝑠) can
be obtained more easily from the measured charge spectrum recorded
at different 𝑉𝑏𝑖𝑎𝑠 values, as discussed in Section 4.4.

An ideal photon-detector produces signals with identical shapes
linearly scaled with the number photons which have initiated Geiger
discharges, and the charge spectrum will consist of 𝛿- functions at 0, 1,
2, . . . pe. SiPMs however show a number of differences from an ideal
detector, frequently called nuisance parameters. These are:

1. Dark counts produce background signals at the primary dark
count rate, 𝐷𝐶𝑅.

2. Secondary photons produced during Geiger discharges can gener-
ate an electron–hole pair in an adjacent pixel and cause a Geiger
discharge there, which results in a double-size signal (d in Fig.
4a). This effect is called prompt cross-talk, and its probability is
𝑃𝑝𝐶𝑇 .

3. Secondary photons produced in Geiger discharges can generate
an electron–hole pair in the non-depleted Si and charge carriers
can diffuse into the amplification region of a neighbouring pixel,
where they cause a Geiger discharge. This effect is called delayed
cross-talk, and its probability is 𝑃𝑑𝐶𝑇 .

4. During the Geiger discharge, charge carriers can be trapped
in defect states and released after some time causing a Geiger
discharge in the same pixel as the primary discharge. This effect
is called after-pulsing (s+a+a in Fig. 4a). The trapping probability
for a state 𝑖 is called 𝑃𝑡𝑟𝑎𝑝, 𝑖 and the corresponding time constant
𝜏𝑡𝑟𝑎𝑝, 𝑖. As can be seen from Fig. 4b the signal strength of after-
pulses depends on the recovery state of the pixel, and increases
proportional to 1−𝑒−𝑡∕𝜏𝑟 . In addition, secondary photons generat-
ing electron–hole pairs in the non-depleted Si with charge carriers
diffusing into the same pixel as the primary Geiger discharge,
contribute to after-pulses. This is called optically-induced after-
pulsing.

In addition, pixel-to-pixel gain variations and read-out noise will
result in signal fluctuations. The effects discussed above can also be
observed in the charge (𝑄) spectra recorded with a QDC (Charge-to-
Digital-Converter). Fig. 3a shows the charge spectrum for a KETEK SiPM
with a pixel size of 15 μm at 𝑉𝑏𝑖𝑎𝑠 = 33 V measured in the dark using
a CAEN QDC. The peak around 380 QDC channels corresponds to zero,
and the peak at 550 QDC channels to a single Geiger discharge. Double
and triple Geiger discharges are also visible. The width of the zero
discharge peak is caused by the electronics noise. The single Geiger
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Fig. 4. SiPM current transients from Ref. [10] illustrating the different pulse categories mentioned in the text. (a) Single Geiger discharges ‘‘s’’, prompt cross-talk ‘‘d’’, and single discharge
with two after-pulses ‘‘s+a+a’’. (b) Transients of after-pulses as a function of time after the initial Geiger discharge. In the figure 𝜏 is used for the recovery time 𝜏𝑟, and 𝑉𝑚𝑎𝑥 for the
amplitude of the signal from a single Geiger discharge.

discharge peak is caused by dark pulses which significantly overlap with
the 100 ns gate used for the measurement. The tail to the left of the single
discharge peak and the flat part between single and zero peak are due to
dark pulses which only partially overlap with the gate. The curve Fit 2
is the result of the fit to the data by a model which includes the nuisance
effects enumerated above (Ref. [11]). Fit 1 considers only single dark
counts without correlated noise.

Fig. 3b shows the 𝑄 spectrum for the same KETEK SiPM illuminated
by a sub-nanosecond laser pulse. The laser intensity was tuned to
result in approximately 1.3 primary Geiger discharges per pulse. As
discussed in Ref. [12], and also observed in the 𝑄 spectrum shown, the
number of events in the peaks does not follow a Poisson distribution,
which is expected for an ideal photon-detector if the incoming photons
are also Poisson distributed. The observed number of pulses at high
𝑄 significantly exceeds the Poisson expectation, which is ascribed to
prompt and delayed cross-talk. The statistics of cross-talk, which can be
described by a Generalised Poisson distribution, is discussed in detail
in Ref. [12]. The events in-between the 𝑁𝐺 = 0 and the 𝑁𝐺 = 1 pe
peak are again ascribed to dark counts. The events in-between the
following peaks and the background below the peaks are ascribed
to after-pulses and delayed cross-talk. The shape of the 𝑄 spectrum
depends on the integration time of the readout electronics, in particular,
if only a fraction of the signal is integrated. The curve in fig. 3b is the
model fit described in Ref. [11], which includes effects 2–4, but not 1,
which explains the disagreement around channel 450. Note, that fitting
separately the peaks with Gauss functions and ignoring the background
in-between, which is frequently done, does not give the correct number
of Geiger discharges, in particular for high 𝑁𝐺 values.

The effect of the nuisance parameters is to change the measured dis-
tribution with respect to the distribution of converting photons, which
would be the response of the ideal photon detector. Two parameters,
the excess charge factor, 𝐸𝐶𝐹 , and the excess noise factor, 𝐸𝑁𝐹 ,
are frequently used to describe the worse performance of a non-ideal
detector [13]. They are discussed next. The distribution of photons and
the number of primary Geiger discharges, 𝑁𝑝𝐺, are assumed to follow
a Poisson distribution with the mean ⟨𝑁𝑝𝐺⟩ and the root-mean-square
(rms) deviation

√

⟨𝑁𝑝𝐺⟩. The response of the ideal photon-detector will
just be the Poisson distribution multiplied with 𝑞0 ⋅ 𝐺∗ resulting in the
mean ⟨𝑄𝑃 ⟩ = 𝑞0 ⋅𝐺∗ ⋅⟨𝑁𝑝𝐺⟩ and the rms deviation 𝜎𝑃 = 𝑞0 ⋅𝐺∗ ⋅

√

⟨𝑁𝑝𝐺⟩.
If the measured charge distribution of the real photon-detector has the
mean ⟨𝑄⟩ and the rms deviation 𝜎𝑄 for the same number of primary
Geiger discharges as the ideal detector, then by definition

𝐸𝐶𝐹 =
⟨𝑄⟩

⟨𝑄𝑃 ⟩
, (4)

and

𝐸𝑁𝐹 =
(𝜎𝑄∕⟨𝑄⟩)2

(𝜎𝑃 ∕⟨𝑄𝑃 ⟩)2
. (5)

As the contribution of the nuisance effects to the measured signal
depends on the effective integration time, also 𝐺∗, 𝐸𝐶𝐹 and 𝐸𝑁𝐹
depend on the readout and the analysis method used, which presents a
significant complication. It should also be noted that assuming a Poisson
distribution for the photons producing primary Geiger discharges is not
necessarily correct for all light sources.

Non-linearity and saturation are other limitations of SiPMs. As the
charge from a single pixel is approximately the same for one and more
than one simultaneous Geiger discharge, the signal is expected to satu-
rate at 𝑄𝑠𝑎𝑡 = 𝑁𝑝𝑖𝑥 ⋅𝑞0 ⋅𝐺∗ for high number of photons, 𝑁𝛾 . The saturation
can be described by a decrease of the photon-detection efficiency, 𝑃𝐷𝐸,
because of the already busy pixels. Well below saturation, the mean
number of Geiger discharges is approximately given by 𝑃𝐷𝐸0 ⋅𝐸𝐶𝐹 ⋅𝑁𝛾 ,
with the photon-detection efficiency without saturation effects 𝑃𝐷𝐸0.
For high numbers of simultaneous photons

𝑁𝐺 ≈ 𝑁𝑝𝑖𝑥 ⋅
(

1 − 𝑒−(𝑃𝐷𝐸0⋅𝐸𝐶𝐹 ⋅𝑁𝛾 )∕𝑁𝑝𝑖𝑥
)

(6)

is expected because of multiple Geiger discharges in individual pixels.
This relation is only valid if the photons are uniformly distributed over
the SiPM. If this is not the case, the non-linearity sets in already at lower
𝑁𝛾 values and the functional form is different. If the arrival time of
the photons is spread over time, some of the pixels will have already
partially recovered when the next photon arrives, and signals exceeding
𝑄𝑠𝑎𝑡 are expected, and actually observed. The situation is quite com-
plex, however phenomenological parametrisations are available, which
describe detailed measurements [14]. High dark count rates, e.g. due
to radiation damage, also cause a decrease of 𝑃𝐷𝐸 due to pixels in
the recharging state after Geiger discharges. This topic is addressed in
Section 4.6 and in the contribution on radiation damage of this Special
Issue [15].

For the description of the nonlinearity, the terms Linearity, Non-
linearity and Dynamic Range are frequently used. Note that different
definitions are found in the literature. For the linearity, 𝐿𝑖𝑛, a minimum
and a maximum value of the number of photons to be detected,
𝑁𝛾, 𝑚𝑖𝑛 and 𝑁𝛾, 𝑚𝑎𝑥, have to be defined. Then 𝐿𝑖𝑛(𝑁𝛾, 𝑚𝑖𝑛, 𝑁𝛾, 𝑚𝑎𝑥) =
𝑅𝑒𝑠(𝑁𝛾, 𝑚𝑎𝑥)∕𝑅𝑒𝑠(𝑁𝛾, 𝑚𝑖𝑛), with the Responsivity 𝑅𝑒𝑠(𝑁𝛾 ) = ⟨𝑄(𝑁𝛾 )⟩∕𝑁𝛾 .
The non-linearity is just 𝑁𝐿𝑖𝑛 = 1 −𝐿𝑖𝑛. For the dynamic range, values
for 𝑁𝐿𝑖𝑛 and for 𝑁𝛾, 𝑚𝑖𝑛 have to be specified. The ratio of 𝑁𝛾 where the
specified 𝑁𝐿𝑖𝑛 is reached to 𝑁𝛾, 𝑚𝑖𝑛 is defined as the dynamic range. In
the situation where zero and one Geiger discharges can be distinguished,
𝑁𝛾, 𝑚𝑖𝑛 = 1∕𝑃𝐷𝐸0 appears to be a reasonable convention.
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Fig. 5. Generic setup for the 𝐼−𝑉 and 𝐶−𝑉 measurements. The elements used to analyse
the measurements in addition to the ones already shown in Fig. 1b are the parasitic
elements 𝐿𝑠, and 𝑅𝐼 for the dark current. Their meaning is described in the text. The
grid capacitance, 𝐶𝑔𝑟𝑖𝑑 , shown in Fig. 1b has not been implemented in the analysis.

3. Measurement setups

In this section an overview of different setups used for characterising
SiPMs is presented, and some recommendations given.

3.1. 𝐼 − 𝑉 and 𝐶 − 𝑉 setup

Fig. 5 shows a schematic layout of the measurement setup used for
the 𝐼 − 𝑉 and 𝐶 − 𝑉 measurements. They are best performed on a
temperature-controlled chuck in a light tight and electrically shielded
box. As it has been observed that SiPM parameters can be influenced
by humidity, a humidity measurement and control of the atmosphere in
the box is recommended.

For the 𝐼−𝑉 measurements the ramping of the voltage should be suf-
ficiently slow so that stable conditions at the individual voltage steps are
reached. This can be verified by taking 𝐼 − 𝑉 data ramping the voltage
up and down. For the precise (≲ 10 mV) determination of the breakdown
voltage 𝑉𝑏𝑑 , a voltage step around 𝑉𝑏𝑑 of 100 mV is recommended. This
small step size should already be used well below 𝑉𝑏𝑑 (e.g. 3 V), to avoid
problems with fitting the data or numerically calculating derivatives.
In addition, note that the Keithley voltage source, which is typically
used for the measurements, has a setting accuracy of ±10 mV with a
saw-tooth deviation as a function of voltage. This can cause problems
for a precise determination of 𝑉𝑏𝑑 . Last but not least, the possibility
to illuminate the SiPM with DC light is highly recommended. For low
dark currents, (e.g. at low operating temperatures), this is needed for a
precise determination of 𝑉𝑏𝑑 , and for highly irradiated SiPMs with high
pixel occupancies, the comparison of the difference of the current with
and without illumination for different radiation fluences can give a first
idea on the degradation of the SiPM as photon-detector due to radiation
damage (Ref. [15] and Section 4.6).

The measurement of the admittance 𝑌 (𝑓 ) as a function of frequency,
𝑓 , can be used to determine the SiPM electrical parameters. In addition
to those already described in Fig. 1b, these are 𝐿𝑠 an effective inductance
for the biasing lines, and 𝑅𝐼 to parameterise the SiPM dark current. Note
that in this model the capacitance of the voltage distribution grid in
parallel to 𝑅𝐼 , discussed e.g. in Refs. [16,17], is not included. As will be
shown in Section 4.1 this model gives a fair description of the measured
data. For the measurements a large frequency range, e.g. 𝑓 = 100 Hz
to 2 MHz should be chosen with about 3 𝑓 -values per decade. High
frequencies are in particular relevant for the determination of 𝐶𝑞 . Only
at high frequencies a significant fraction of the AC-current flows through
𝐶𝑞 and its effect can be seen in the 𝑌 −𝑓 measurements. Experience has
shown that a value of 𝑉𝑏𝑖𝑎𝑠 between 0.5 and 1 V below 𝑉𝑏𝑑 gives reliable
results, even if the dark-count rate is very high (>1 GHz). As discussed
in Section 4.2, 𝐶 − 𝑉 measurements can be used to estimate the doping
profile and the electric field of the avalanche region.

3.2. Current-transient setup

A number of groups (e.g. [13,18,19]) are using setups to characterise
SiPMs by recording the current transients. They all follow a similar de-
sign: The SiPM is mounted in a temperature-controlled chamber, where
it can be uniformly illuminated by a sub-nanosecond pulsed light source.
The SiPM signal is amplified by a low-noise high-bandwidth amplifier
and the waveform digitised by a digital oscilloscope or digitiser. A PC
is used for steering the measurements, for storing the data and for
performing a first on-line analysis. Fig. 6 shows the setup at FBK as
an example. Details can be found in Ref. [13]. Together with this setup
a complete analysis chain has been developed which allows a fast and
reliable characterisation of large samples of SiPMs. It should be noted
that, if such a setup is used to investigate highly-irradiated SiPMs where
the dark current can exceed tens of mA, the heating of the SiPM is
significant and the exact knowledge of the SiPM temperature is quite
a challenge. In addition, the voltage drop over the protection, filter
and readout resistors has to be taken into account. Such effects can be
investigated using a non-irradiated SiPM and simulating the high DCR
by an additional DC light source. To the author’s knowledge, such a
study has so far not been reported.

The recording of the transient allows for a most complete char-
acterisation of SiPMs: In the off-line data analysis, pulse amplitudes
and time delays of pulses correlated with the primary discharges can
be investigated, as well as charge and amplitude distributions for
different pulse integration times and digital pulse shaping evaluated.
However, the effort to set up a system with low noise, high performance
and precise temperature control is significant and requires quite some
expertise.

3.3. Charge-measurement setup

Recording charge spectra from SiPMs is significantly simpler than
recording and analysing current transients. However, the time informa-
tion, required for a detailed understanding of the nuisance parameters,
is not available. Again a number of groups (e.g. [20–24]) have set up
such systems. An example from Ref. [23] is shown in Fig. 7. A pulse
generator triggers a LED, which illuminates the SiPM. The SiPM signal
is amplified by a factor 50 (for a 50 Ω load) by a high-bandwidth
amplifier and recorded by a Charge-to-Digital-Converter (QDC) with the
gate generated by the pulse generator.

In addition to home-built systems, several firms offer SiPM evalu-
ation kits. An example is the SiPM Educational Kit from CAEN [24].
A photo of such a setup is shown in Fig. 8. It consists of a LED
emitting light of 400 nm with sub-nanosecond rise time and 5 ns decay
time, a two-channel power supply-amplifier unit and a two-channel
250 MS/s digitiser with 12 bit dynamic range. The firmware allows
charge integration, pulse-shape discrimination and triggering. In this
way high-speed recording of charge spectra is possible. Commercial and
custom built systems, which record charge spectra, are particularly well
suited for the high-throughput characterisation of SiPMs.

3.4. Absolute PDE setup

For measuring the photon-detection efficiency, 𝑃𝐷𝐸, the response
of the SiPM is compared to the response of a calibrated photo-detector.
Both pulsed and DC measurements, or a combination of both are used.
Again, several setups (e.g. [13,19,21,25–27]) following similar concepts
are in use. As an example, the layout from Ref. [21] is shown in Fig. 9.

As light sources pulsed laser diodes and LEDs with pulse widths
below 2 ns are used. The wavelength spectra have a FWHM of typically
5 nm for the laser and 10 to 20 nm for the LED. The SiPM output signal is
amplified by a fast amplifier and digitised by a QDC with an integration
gate of 50 to a few 100 ns depending on the SiPM pulse shape. Dark
spectra and spectra with pulsed light are recorded. The light intensity
is adjusted so that the fraction of events without a SiPM pulse, 𝑓0, 𝑙𝑖𝑔ℎ𝑡,
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Fig. 6. Setup from Ref. [13] for the characterisation of SiPMs using a digital scope for transient recording. It consists of a climate-controlled chamber, the SiPM with its amplifier, a
digital scope with a sampling rate of 10 GS/s and a bandwidth set to 500 MHz and a PC for data acquisition.

Fig. 7. Schematic diagram of the setup from Ref. [23] for the characterisation of SiPMs
recording charge spectra.

can be determined precisely. Assuming Poisson statistics for the number
of dark counts and of primary Geiger discharges, the mean number of
primary Geiger discharges per pulse from the photons of the light source
is

⟨𝑁𝑝𝐺, 𝑝ℎ𝑜𝑡𝑜⟩ = ln(𝑓0, 𝑑𝑎𝑟𝑘∕𝑓0, 𝑙𝑖𝑔ℎ𝑡), (7)

with 𝑓0, 𝑑𝑎𝑟𝑘 the fraction of events without a SiPM pulse under dark
conditions. When deriving this formula the fact is used that in the

Fig. 8. CAEN setup (Ref. [24]) for the characterisation of SiPMs. It is a modular plug-and-
play system which is simple to set up and allows characterising many properties of SiPMs.
A suite of analysis software comes with the system. Similar systems are also available from
other vendors. These systems are ideal for a first step towards characterising SiPMs and
also well suited for laboratories for pupils and students.

absence of a Geiger discharge, there are no correlated pulses, and the
mean number of primary discharges ⟨𝑁𝑝𝐺⟩ for both light and dark
condition is obtained from the zero probability of the Poisson distri-
bution: 𝑃 (0, ⟨𝑁𝑝𝐺⟩) = 𝑒−⟨𝑁𝑝𝐺⟩. Finally, the absolute 𝑃𝐷𝐸 is obtained
by normalising to the power 𝑃𝑟𝑒𝑓 measured by the calibrated reference
diode and 𝑃𝑅1∕2, the measured power ratio of port 1 to port 2 using

𝑃𝐷𝐸 =
⟨𝑁𝑝𝐺, 𝑝ℎ𝑜𝑡𝑜⟩ ⋅ 𝑃𝑅1∕2 ⋅ 𝑓𝐿𝑎𝑠𝑒𝑟

𝑃𝑟𝑒𝑓∕(ℎ𝜈)
, (8)

with the laser repetition rate 𝑓𝐿𝑎𝑠𝑒𝑟 and the photon energy ℎ𝜈.

Fig. 9. (a) Schematic layout of the 𝑃𝐷𝐸 measurement from Ref. [21]. The absolute normalisation is obtained by measuring the power of the light source with a calibrated photo-diode.
(b) Sketch of the integrating sphere and the positions of the SiPM and the calibrated photo-diode. The angles between the individual openings are 90◦.
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Fig. 10. (a) Setup from Ref. [21] for the 𝐷𝐶𝑅, cross-talk and after-pulse measurements. For the 𝐷𝐶𝑅 and cross-talk measurement the count rate as function of discriminator threshold
is measured; for the after-pulse measurement the discriminator output is connected to the TDC. (b) Measured count rate as function of discriminator threshold. The unit pe corresponds
to the amplitude of a single Geiger discharge.

The 𝑃𝐷𝐸 for typically four wavelengths is determined as described
above. In order to extend the measurements to wavelengths in the range
between 300 and 1000 nm, a Xe lamp with a monochromator is used as
light source and the current from the SiPM and the reference diode is
measured. As the current includes cross-talk and after-pulses, the mea-
surements have to be normalised to the 𝑃𝐷𝐸 measurements described
above. With a careful control of different systematic effects, absolute
𝑃𝐷𝐸 values with an ≈ 3 % uncertainty for wavelengths between 350
and 800 nm have been determined [19]. For lower wavelengths the
uncertainties are dominated by stray light, and above 800 nm by the
knowledge of the quantum efficiency of the Si reference diode. In Ref.
[28] a precision method with two integrating light spheres is presented.
In Ref. [29] a double attenuator techniques is described which achieves
an absolute uncertainty below 0.5% at a wavelength of 770 nm.

3.5. Counting methods

An elegant method for a quick determination of the nuisance param-
eters 𝐷𝐶𝑅 and correlated noise, is described in Ref. [21]. The schematic
layout is shown in Fig. 10a.

The measurements are performed in the dark. Fig. 10b shows the
count rate as function of the discriminator threshold in units of pe, the
amplitude of a single Geiger discharge. The curve, which corresponds
to the cumulative pulse-amplitude distribution, shows characteristic
plateaus at 0.5, 1.5, and 2.5 pe. The rate 𝑅𝑎𝑡𝑒0.5 for 0.5 pe gives the
𝐷𝐶𝑅, and the ratio 𝑅𝑎𝑡𝑒1.5∕𝑅𝑎𝑡𝑒0.5 approximately the overall cross-talk
probability.

For the measurement of the time dependence of the delayed corre-
lated pulses, the discriminator threshold is set to a value well above
the electronics noise and the time between triggers is measured using
the TDC. The measured time distribution can be fitted by the sum of
delayed pulses with two time constants and the dark-count contribution.
More details are given in [21] noting that the functions used for the fits
(Eqs. (5) and (6) in the Ref.) are only approximately correct. A similar
analysis with an improved formula is given in Ref. [30].

It should be noted that this and more information can be obtained
from the 𝛥𝑡 method using current transients as described in Section 3.2,
which is probably the reason why the counting method is not widely
used.

3.6. Optical observation of Geiger discharges

To study the spatial distribution and extension of Geiger discharges,
the author of Ref. [31] uses the setup shown in Fig. 11a. The method is
based on the observation that Geiger discharges emit optical and near-
infrared photons, as first shown in Ref. [32] and studied quantitatively

in Ref. [33]. In Ref. [34] the light spectrum from a Hamamatsu SiPM
has been measured in the wavelength range between 450 and 1600 nm.

In Ref. [31] the SiPM is imaged by a high resolution CCD camera with
a sensitivity for photons between 300 and 900 nm. Fig. 11b shows the
image of a KETEK PM3350T SiPM (50 μm pixels) in the dark at 20 ◦C for
𝑉𝑂𝑉 = 5.4V and an exposure time of 4 h. Assuming that on average every
Geiger discharge produces the same amount of light, the observed light
intensity is proportional to 𝐷𝐶𝑅. Hot-spots are observed with a light
intensity approximately 20 times higher than the average. These high
generation rates are explained by the presence of point defects, either
of the starting material or generated during the fabrication process. A
similar observation has been made in Ref. [35] using a digital SiPM,
where individual pixels can be disabled and the𝐷𝐶𝑅 of individual pixels
measured. Thus, the frequently made assumption, that the distribution
of dark counts can be described by a Poisson distribution with the same
mean for every pixel, is in strong disagreement with this observation.
It may be a better approximation for highly radiation-damaged SiPMs.
This however has not yet been demonstrated.

Fig. 11(b) also shows that the hot-spots are fixed in space and that the
light spots have a diameter of about 10 μm, much smaller than the 50 μm
pixel size, which allows estimating the diameter of the micro-discharge
channels. It is also reported that the diameter of the light spots does not
depend on 𝑉𝑂𝑉 .

4. Determination of the SiPM parameters

In the following, it is described how the different parameters dis-
cussed in Section 2 can be determined using the setups presented in
Section 3. Most of the parameters can be determined in several ways.
Some comments will be given, which way the author considers to be the
most trustworthy. As discussed in Ref. [15], most of the methods cannot
be applied if the 𝐷𝐶𝑅 or the noise is so high that 0, 1, and more Geiger
discharges cannot be distinguished. Ideas on how to characterise SiPMs
in these situations will be presented.

4.1. Electrical parameters

To illustrate the determination of the electrical parameters, results
are presented for 4 different KETEK SiPMs studied in Ref. [7]. Their
names and parameters are given in Table 2. They all have an area of
1 mm2, PNCV is a special, single pixel produced by KETEK for testing
purposes. It cannot be used as photo-detector for voltages above 𝑉𝑏𝑑 ,
because the value of 𝑅𝑞 is too low to quench the Geiger discharge.
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Fig. 11. (a) Setup from Ref. [31] to study the light emission from Geiger discharges in SiPMs. (b) Distribution of the observed light intensity from Geiger discharges for a KETEK SiPM
with a pixel size of 50 μm.

Table 2
Geometrical parameters (top) and electrical parameters as determined from the
admittance-frequency (𝑌 − 𝑓 ) measurements (bottom) of the KETEK SiPMs investigated.

PM15 PM25 PM50 PM100 PNCV

𝑁𝑝𝑖𝑥 4384 1600 400 100 1
𝑝𝑖𝑡𝑐ℎ 15 μm 25 μm 50 μm 100 μm 1 mm

𝐶𝑑 18 fF 69 fF 330 fF 1.5 pF 110 pF
𝑅𝑞 750 kΩ 500 kΩ 340 kΩ 410 kΩ 130 Ω
𝐶𝑞 <5 fF <10 fF 25 fF 155 fF –
𝑅𝐼 85 GΩ 80 GΩ 70 GΩ 50 GΩ 85 G𝛺
𝜏𝑟 14 ns 25 ns 100 ns 620 ns 14 ns

The admittance-frequency, 𝑌 − 𝑓 , measurements were performed at
0.5 and 1 V below the breakdown voltage for 27 frequencies between
100 Hz and 2 GHz. The LCR-meter used records

𝑌 (𝑓 ) = 1∕𝑅𝑝𝑎𝑟(𝑓 ) + 𝑖 𝜔 ⋅ 𝐶𝑝𝑎𝑟(𝑓 ), (9)

with the parallel resistance, 𝑅𝑝𝑎𝑟, and the parallel capacitance, 𝐶𝑝𝑎𝑟. The
series capacitance, 𝐶𝑠𝑒𝑟, and the series resistance, 𝑅𝑠𝑒𝑟, are obtained from
Eq. (9) using 𝑍(𝑓 ) = 1∕𝑌 (𝑓 ) = 𝑅𝑠𝑒𝑟 + 1∕(𝑖 𝜔 ⋅ 𝐶𝑠𝑒𝑟). For the analysis, the
electrical model shown in Fig. 5 with the 𝐶 − 𝑉 switch closed, is used.
The admittance of a single pixel is given by

𝑌𝑝𝑖𝑥 =
(

( 1
𝑅𝑞

+ 𝑖 𝜔 ⋅ 𝐶𝑞
)−1 + 1

𝑖 𝜔 ⋅ 𝐶𝑑

)−1
, (10)

and the total admittance by

𝑌𝑡𝑜𝑡 =
(

(𝑁𝑝𝑖𝑥 ⋅ 𝑌𝑝𝑖𝑥)−1 + 𝑖 𝜔 ⋅ 𝐿𝑠

)−1
+ 1

𝑅𝐼
. (11)

Fig. 12 shows as a function of frequency the measured 𝐶𝑝𝑎𝑟 and 𝑅𝑠𝑒𝑟.
From Eq. (11) follows that for intermediate frequencies 𝐶𝑝𝑎𝑟 ≈ 𝑁𝑝𝑖𝑥 ⋅𝐶𝑑 ,
and at high frequencies, for 𝜔 ⋅𝐶𝑞 ≫ 1∕𝑅𝑞 , 𝐶𝑝𝑎𝑟 ≈ 𝑁𝑝𝑖𝑥 ⋅ (1∕𝐶𝑞 +1∕𝐶𝑑 )−1.
For the SiPMs PM50 and PM100, where a significant fast component is
observed in the current transient (see Fig. 2), the decrease of 𝐶𝑝𝑎𝑟 at high
frequencies can be seen in Fig. 12a. At high frequencies, the dominant
contribution to 𝑍𝑡𝑜𝑡 = 1∕𝑌𝑡𝑜𝑡 is 𝑅𝑞∕𝑁𝑝𝑖𝑥 in series with 𝑁𝑝𝑖𝑥 ⋅ 𝐶𝑑 . Thus in
Fig. 12b at high frequencies the constant value of 𝑅𝑠𝑒𝑟 ≈ 𝑅𝑞∕𝑁𝑝𝑖𝑥 gives
an approximate value of 𝑅𝑞 . With these initial values for 𝐶𝑑 , 𝐶𝑞 , and 𝑅𝑞 ,
all 5 parameters of the model (𝐶𝑑 , 𝐶𝑞 , 𝑅𝑞 , 𝐿𝑠, 𝑅𝐼 ) are adjusted until the
data are well described. The results are shown as solid lines in Fig. 12.

It is concluded that the electrical SiPM parameters can be approxi-
mately determined from 𝑌 −𝑓 measurements and that with this method
the change of these parameters with irradiation can be determined for
highly irradiated SiPMs, where dark-count rates exceed GHz. Ref. [36]
reports such a study for radiation damage by X-rays, and Ref. [37] by

reactor neutrons up to fluences of 5 × 1014 cm−2. A detailed study of
the accuracy of this method and its dependence on the SiPM design has
so far not been published. However, it is surprising that this method of
determining the electrical SiPM parameters is hardly used.

The standard way of determining 𝑅𝑞 is to measure the current for
forward bias with a setup as shown in Fig. 5 with the 𝐼 − 𝑉 switch
closed. For sufficiently high 𝑉𝑏𝑖𝑎𝑠 values the diode becomes conductive
and the differential resistance is 1∕(d𝐼𝑓∕d𝑉𝑏𝑖𝑎𝑠) ≈ 𝑅𝑞∕𝑁𝑝𝑖𝑥. Examples for
such measurements from Ref. [19] are shown in Fig. 13.

Fig. 13a shows the 𝐼𝑓 −𝑉 results for temperatures between −40◦ and
+40 ◦C with straight-line fits for 𝑉𝑏𝑖𝑎𝑠 > 2 V. The inverse of the slope
gives 𝑅𝑞∕𝑁𝑝𝑖𝑥. Fig. 13b shows the temperature dependence of 𝑅𝑞 . As
expected for a poly-Si resistor, the resistance increases with decreasing
temperature.

From the author’s experience, the value obtained for 𝑅𝑞 depends on
the fit range, and the derivative d𝐼𝑓∕d𝑉𝑏𝑖𝑎𝑠 approaches, but does not
reach a constant value. For the KETEK SiPMs studied by the author, the
value of 𝑅𝑞 from the 𝐼𝑓 −𝑉 measurement is typically 5% higher than the
one found from the 𝑌 − 𝑓 measurements, which is assumed to be more
accurate. However, for the SiPM characterisation the precise knowledge
of 𝑅𝑞 is not so important.

4.2. Electric field

From 𝐶 − 𝑉 measurements it is possible to estimate the doping
density and the electric field in the amplification region. Such infor-
mation, which is only rarely communicated by the vendor to the user, is
required to simulate the Geiger breakdown probability as a function of
position, which can be done using the formulae given in Ref. [6]. For the
determination of the electric field the standard 1-D textbook formulae
for an asymmetric 𝑝𝑛 junction given e.g. in Ref. [38] can be used:

𝑥(𝑉𝑏𝑖𝑎𝑠) =
𝜀0 𝜀𝑆𝑖𝐴
𝐶(𝑉𝑏𝑖𝑎𝑠)

and 𝑁𝑑 (𝑥) =
2

𝑞0 𝜀0 𝜀𝑆𝑖 𝐴2
⋅

1
d(1∕𝐶)2∕d𝑉𝑏𝑖𝑎𝑠

(12)

with the distance from the 𝑝𝑛 junction 𝑥, and the doping density 𝑁𝑑 (𝑥),
and

𝐸(𝑥) = ∫

𝑥

𝑥𝑚𝑎𝑥

𝑞0 𝑁𝑑 (𝑥)
𝜀0 𝜀𝑆𝑖

d𝑥 (13)

for the electric field 𝐸(𝑥). The SiPM area is denoted by 𝐴 = 𝑁𝑝𝑖𝑥 ⋅𝑝𝑖𝑡𝑐ℎ2,
the elementary charge by 𝑞0 and the dielectric constant of Si by 𝜀0 𝜀𝑆𝑖.
The maximal depletion depth reached is 𝑥𝑚𝑎𝑥 = 𝑥(𝑉𝑏𝑖𝑎𝑠, 𝑚𝑎𝑥), where
𝑉𝑏𝑖𝑎𝑠, 𝑚𝑎𝑥 = 27 V is the maximum bias voltage used in the measurements.
Fig. 14 shows the results for the KETEK SiPMs of Table 2. For these SiPMs
the 𝑝𝑛 junction is close to the entrance window, the built-in depletion
depth is about 0.35 μm, and the maximal electric field ≈ 350 kV/cm
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Fig. 12. Analysis of the admittance-frequency (𝑌 − 𝑓 ) measurements for KETEK SiPMs with different pixel sizes measured 0.5 V below the breakdown voltage, 𝑉𝑏𝑑 ≈ 27.5𝑉 , and 20 ◦C.
From the 𝑌 −𝑓 data (a) the parallel capacitance, 𝐶𝑝𝑎𝑟, and (b) the series resistance, 𝑅𝑠𝑒𝑟, as a function of frequency are shown. As discussed in the text, approximate values of the electrical
parameters 𝐶𝑑 (𝐶𝑝𝑖𝑥 in the figure) and 𝑅𝑞 can be obtained directly from the values of constant 𝐶𝑝𝑎𝑟 and 𝑅𝑠𝑒𝑟.

Fig. 13. Determination of the quenching resistance, 𝑅𝑞 , from the 𝐼𝑓 − 𝑉 measurement for different temperatures with forward bias for the Hamamatsu S13360-3050CS SiPM from Ref.
[19]. (a) The value of 𝑅𝑞 is obtained from a linear fit to the 𝐼𝑓 − 𝑉 measurement for 𝑉𝑏𝑖𝑎𝑠 > 2 V. (b) The value of 𝑅𝑞 as function of temperature.

Fig. 14. Electric field as a function of the distance from the 𝑝𝑛 junction determined from
𝐶 − 𝑉 measurements in the range 𝑉𝑏𝑖𝑎𝑠 = 1 to 27 V for the SiPMs listed in Table 2.

for 𝑉𝑏𝑖𝑎𝑠 approximately 0.5 V below the breakdown voltage 𝑉𝑏𝑑 . The
full depletion depth is about 1 μm, which is quite shallow, and results
in a relatively narrow amplification region. The observation, that the
electric field obtained for the PNCV, a single 1 mm2 diode, and for the
SiPMs with different pixel sizes are approximately the same, confirms
that assuming the 1-D model and taking the entire SiPM area for 𝐴 in
the analysis, are reasonable for the SiPM investigated. The electric field
above 𝑉𝑏𝑑 can be estimated, by adding (𝑉𝑏𝑖𝑎𝑠−𝑉𝑏𝑖𝑎𝑠, 𝑚𝑎𝑥)∕𝑥𝑚𝑎𝑥 to the field
determined below 𝑉𝑏𝑑 .

4.3. Breakdown and turnoff voltage

Consistent with the discussion in Section 2, a distinction is made in
this paper between 𝑉𝑏𝑑 , the voltage at which Geiger discharges start
to occur, and 𝑉𝑜𝑓𝑓 , the voltage at which the Geiger discharges are
quenched. In Ref. [7] a difference 𝑉𝑏𝑑 − 𝑉𝑜𝑓𝑓 of about 1 V is reported
for a specific SiPM, and in Ref. [8] a model calculation for 𝑉𝑏𝑑 − 𝑉𝑜𝑓𝑓
is presented. However, in most of the literature only 𝑉𝑏𝑑 is used, and
this issue still has to be clarified. If the SiPM is operated well above 𝑉𝑏𝑑 ,
a small difference 𝑉𝑏𝑑 − 𝑉𝑜𝑓𝑓 has only a small effect. However, if the
SiPM is operated close to 𝑉𝑏𝑑 , which may be required at high dark count
rates due to background light or radiation damage, the effect could be
significant.

Two types of measurements are used to determine the breakdown
voltage 𝑉𝑏𝑑 : Analysis of the 𝐼 − 𝑉 characteristics and extrapolation of
𝑃𝐷𝐸(𝑉𝑏𝑖𝑎𝑠) to 𝑃𝐷𝐸(𝑉𝑏𝑑 ) = 0. For the determination of the turn-off volt-
age 𝑉𝑜𝑓𝑓 , the linear gain-voltage dependence, 𝐺∗(𝑉𝑏𝑖𝑎𝑠) is extrapolated
to 𝐺∗(𝑉𝑜𝑓𝑓 ) = 1.

Fig. 15 shows 𝐼 − 𝑉 measurements for the KETEK SiPM MP15 at
+20 ◦C and −20 ◦C in the dark and with DC illumination by a blue
LED with low and high photon intensity. The current scale extends
over 9 orders of magnitude. At 𝑉𝑏𝑑 the currents with and without
illumination increase rapidly due to the onset of Geiger discharges. As
will be shown later quantitatively, at a given temperature the same 𝑉𝑏𝑑
value is observed with and without illumination. Between +20 ◦C and
−20 ◦C 𝑉𝑏𝑑 decreases by ≈ 900 mV, because of the increase of the charge-
carrier ionisation coefficients with decreasing temperature.

Below 𝑉𝑏𝑑 the 𝐼−𝑉 characteristics are very different for the data with
and without illumination: With illumination (𝐼𝑙𝑖𝑔ℎ𝑡) the expected in-
crease in current due to avalanche multiplication – the regime in which
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Fig. 15. Current versus 𝑉𝑏𝑖𝑎𝑠 for the KETEK SiPM measured at +20 ◦C and −20 ◦C in the dark (‘‘dark’’) and with DC-illumination by a blue LED with low (‘‘dark+LED1’’) and high
(‘‘dark+LED2’’) intensity. After subtracting the dark current, the photo-currents for LED1 and LED2 scale (not shown).

Avalanche Photo-Diodes (APDs) are operated – is observed, whereas
without illumination (𝐼𝑑𝑎𝑟𝑘) the current is constant up to 𝑉𝑏𝑑 . The reason
is that 𝐼𝑑𝑎𝑟𝑘 below 𝑉𝑏𝑑 is dominated by surface-generation current from
the depleted Si-SiO2 interface, which misses the amplification region
and is therefore not amplified.

At 𝑉𝑏𝑑 the current rises rapidly, with an increase which is higher
for the illuminated SiPM. The reason is again that charge carriers from
the Si-SiO2 interface bypass the amplification region. It is also seen that
the relative slope of 𝐼𝑑𝑎𝑟𝑘 is steeper than of 𝐼𝑙𝑖𝑔ℎ𝑡 above 𝑉𝑏𝑑 . The reason
is the position dependence of the Geiger trigger probability, 𝑃𝑇 . It is
highest close to the 𝑝𝑛 junction, which for this SiPM is located near to
the SiPM entrance window. Whereas the thermally generated 𝑒ℎ pairs
are approximately uniformly generated in the depletion region, the blue
light has an absorption length of ≈ 0.1μm and generates 𝑒ℎ pairs in the
region of highest 𝑃𝑇 only. With increasing 𝑉𝑏𝑖𝑎𝑠 the region of high 𝑃𝑇
extends further and further into the amplification region, thus increasing
⟨𝑃𝑇 ⟩ for the uniformly generated 𝑒ℎ pairs from dark counts.

At voltages above 𝑉𝑏𝑖𝑎𝑠 ≈ 37 V, 𝐼𝑑𝑎𝑟𝑘 and 𝐼𝑙𝑖𝑔ℎ𝑡 at −20 ◦C show an
increase of the slope of ln(𝐼) compared to the +20 ◦C data. It still has to
be investigated if this increase is due to Geiger discharges for which the
quenching is delayed and the current through 𝑅𝑞 during the discharge
contributes significantly to the signal, or to an increased correlated noise
(e.g. after-pulses) at high electric fields and low temperature.

Several methods are used to determine 𝑉𝑏𝑑 from the 𝐼(𝑉𝑏𝑖𝑎𝑠) mea-
surements giving all similar results, and it is a matter of taste which
one to use. Most of them use either the logarithmic derivative, 𝐿𝐷 =
d ln(𝐼)∕d𝑉𝑏𝑖𝑎𝑠, or its inverse 𝐼𝐿𝐷 = 1∕𝐿𝐷. The advantage of 𝐿𝐷 and
𝐼𝐿𝐷 is that they are only sensitive to the shape and not to the value of
𝐼(𝑉𝑏𝑖𝑎𝑠), and 𝐼(𝑉𝑏𝑖𝑎𝑠) measurements can be easily compared, even if the
current values are vastly different. This is seen in Fig. 16, where 𝐼𝑑𝑎𝑟𝑘
and 𝐼𝑙𝑖𝑔ℎ𝑡 differ by three orders of magnitude, and the 𝐼𝐿𝐷s are quite
similar.

The breakdown voltage 𝑉𝑏𝑑 for the different methods is determined
as the voltage at which

1. 𝐿𝐷 has its maximum.
2. The parabola through the 3 points around the minimum of 𝐼𝐿𝐷

has its minimum.
3. The extrapolation of a straight-line (or parabola) fit of 𝐼𝐿𝐷 for

𝑉𝑏𝑖𝑎𝑠 > 𝑉𝑏𝑑 is zero.
4. The extrapolation of a straight-line fit of 𝐼𝐿𝐷 for 𝑉𝑏𝑖𝑎𝑠 < 𝑉𝑏𝑑 is

zero
5. The second derivative of ln 𝐼(𝑉𝑏𝑖𝑎𝑠) with respect to 𝑉𝑏𝑖𝑎𝑠 has its

maximum.
6. A second order polynomial, fitted to 𝐼(𝑉𝑏𝑖𝑎𝑠) above 𝑉𝑏𝑑 after

surface-current subtraction, crosses the 𝑉𝑏𝑖𝑎𝑠 axis.

Table 3
Results of the different methods for determining 𝑉𝑏𝑑 for the KETEK SiPM with 15 μm pitch.

Method 1 2 3 4

𝑉𝑏𝑑 f rom 𝐼𝑑𝑎𝑟𝑘 [V] 27.6 27.57 27.42 27.44
𝑉𝑏𝑑 f rom 𝐼𝑙𝑖𝑔ℎ𝑡 [V] 27.5 27.51 27.49 27.41

Fig. 16 and Table 3 show the results of methods 1 − 4 for the KETEK
SiPM PM15. Shown in the figure are 𝐼𝑑𝑎𝑟𝑘 and 𝐼𝑙𝑖𝑔ℎ𝑡 with the scale on
the right, and the corresponding 𝐼𝐿𝐷(𝑉𝑏𝑖𝑎𝑠) results with straight-line fits
below and above 𝑉𝑏𝑑 , with the scale on the left. It is found that the results
for 𝑉𝑏𝑑 from 𝐼𝑑𝑎𝑟𝑘 and 𝐼𝑙𝑖𝑔ℎ𝑡 for 𝑉𝑏𝑖𝑎𝑠 > 𝑉𝑏𝑑 agree within ±20 mV. The
values found from 𝐼𝑑𝑎𝑟𝑘 for methods 1 and 2 are systematically higher
by ≈ 100 mV, which is related to the nearly constant 𝐼𝑑𝑎𝑟𝑘 for 𝑉𝑏𝑖𝑎𝑠 < 𝑉𝑏𝑑 ,
which results in a very high 𝐼𝐿𝐷 value and shifts the 𝐼𝐿𝐷 minimum to
somewhat higher values.

In Ref. [19] method 5 is compared to methods 1 and 2, and
agreement at the 100 mV is reported. To the knowledge of the author,
a comparison at the 20 mV level is not available. In addition it is noted,
that obtaining reliably second derivatives from experimental data can
by quite tricky.

As discussed below, the second order polynomial of method 6, which
is proposed in Ref. [10] and also recommended in Ref. [19], describes
only the 𝐼𝑑𝑎𝑟𝑘 but not the 𝐼𝑙𝑖𝑔ℎ𝑡 data for the KETEK SiPMs. Therefore it
was not used. The method assumes the functional form for the Geiger
breakdown probability 𝑃𝑇 ∝

[

1 − exp
(

−𝛼 ⋅
(

𝑉𝑏𝑖𝑎𝑠 − 𝑉𝑏𝑑
))]

for both 𝐼𝑑𝑎𝑟𝑘
and 𝐼𝑙𝑖𝑔ℎ𝑡. Apparently the functional form of 𝑃𝑇 (𝑉𝑏𝑖𝑎𝑠) depends on the
SiPM design and is also position dependent. As a result, a power-law fit
𝐼(𝑉𝑏𝑖𝑎𝑠) ∝ (𝑉𝑏𝑖𝑎𝑠 −𝑉𝑏𝑑 )𝑛 with the free parameter 𝑛, which is equivalent to
method 3, is the safer approach.

For a quick and reliable determination at the 50 mV level it is
recommended to use method 2 with the SiPM illuminated with DC light.
In particular at low temperatures 𝐼𝑑𝑎𝑟𝑘 is so low that the measurement
errors are significant, which makes the 𝑉𝑏𝑑 results unreliable. An
idea about the dominant systematic uncertainties and a more precise
determination can be obtained by varying the fit range in method 3 and
by using a second order polynomial to fit 𝐼𝐿𝐷.

From the fit using method 3 the inverse slope 1∕𝑛 of 𝐼𝐿𝐷 is obtained:
𝑛𝑑𝑎𝑟𝑘 from 𝐼𝑑𝑎𝑟𝑘, and 𝑛𝑝ℎ𝑜𝑡𝑜 from 𝐼𝑝ℎ𝑜𝑡𝑜. The values found for 𝑛𝑑𝑎𝑟𝑘 and
for 𝑛𝑝ℎ𝑜𝑡𝑜 are 1.96 and 1.43, respectively. For an 𝐼(𝑉 ) = (𝑉 − 𝑉𝑏𝑑 )𝑛

dependence, 𝐼𝐿𝐷(𝑉𝑏𝑖𝑎𝑠) = (𝑉𝑏𝑖𝑎𝑠 − 𝑉𝑏𝑑 )∕𝑛. Thus a straight line of 𝐼𝐿𝐷
means that above 𝑉𝑏𝑑 the current obeys the power law 𝐼(𝑉𝑏𝑖𝑎𝑠) ∝
(𝑉𝑏𝑖𝑎𝑠 − 𝑉𝑏𝑑 )𝑛.

From 𝑛𝑑𝑎𝑟𝑘 and 𝑛𝑝ℎ𝑜𝑡𝑜 information on the position – and 𝑉𝑏𝑖𝑎𝑠–
dependence of the Geiger-discharge probability, 𝑃𝑇 , can be obtained:
Assuming a uniform, voltage-independent thermal volume-generation
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Fig. 16. For the KETEK SiPM with 15 μm pitch measured at +20 ◦C: 𝐼𝑑𝑎𝑟𝑘 and 𝐼𝑙𝑖𝑔ℎ𝑡 (𝐼𝑑𝑎𝑟𝑘+𝐿𝐸𝐷 in the figure) with the scale on the right, and the corresponding 𝐼𝐿𝐷 values with straight-line
fits below and above 𝑉𝑏𝑑 with the scale on the left.

Fig. 17. Results for the determination of 𝑉𝑏𝑑 and 𝑉𝑜𝑓𝑓 for four KETEK SiPMs with different pitch from Ref. [7]. (a) Gain versus bias voltage, 𝐺(𝑉𝑏𝑖𝑎𝑠), and straight-line fits to determine
the turn-off voltage 𝑉𝑜𝑓𝑓 . (b) Difference 𝑉𝑏𝑑 − 𝑉𝑜𝑓𝑓 as a function of the pixel pitch. 𝑉𝑜𝑓𝑓 from the 𝐺(𝑉𝑏𝑖𝑎𝑠) measurement is denoted VG, 𝑉𝑏𝑑 from 𝐼(𝑉𝑏𝑖𝑎𝑠) VI, and 𝑉𝑏𝑑 from 𝑃𝐷𝐸(𝑉𝑏𝑖𝑎𝑠) VPD.

rate 𝑈𝑔𝑒𝑛 in the depletion region, i.e. ignoring high-field effects, the
primary dark count rate 𝐷𝐶𝑅𝑝 = 𝑈𝑔𝑒𝑛 ⋅ ⟨𝑃𝑇 ⟩𝑑𝑒𝑝, and 𝐼𝑑𝑎𝑟𝑘 = 𝑞0 ⋅ 𝐺 ⋅
𝐷𝐶𝑅 ⋅ 𝐸𝐶𝐹 ∝ 𝐺 ⋅ ⟨𝑃𝑇 ⟩𝑑𝑒𝑝 ⋅ 𝐸𝐶𝐹 , where 𝑃𝑇 is averaged over the entire
depletion region. In the approximation 𝑉𝑏𝑑 ≈ 𝑉𝑜𝑓𝑓 , 𝐺 ∝ (𝑉𝑏𝑖𝑎𝑠 − 𝑉𝑏𝑑 )1,
and taking into account that 𝐸𝐶𝐹 ≈ 1 for small 𝑉𝑏𝑖𝑎𝑠 − 𝑉𝑏𝑑 values,
⟨𝑃𝑇 ⟩𝑑𝑒𝑝 ∝ (𝑉𝑏𝑖𝑎𝑠 − 𝑉𝑏𝑑 )𝑛𝑑𝑎𝑟𝑘−1. The corresponding relation for the photo-
current is: 𝐼𝑝ℎ𝑜𝑡𝑜 = 𝑞0 ⋅ 𝐺 ⋅𝑁𝛾 ⋅ 𝑃𝐷𝐸 ⋅ 𝐸𝐶𝐹 ∝ 𝐺 ⋅ ⟨𝑃𝑇 ⟩𝑝ℎ𝑜𝑡𝑜 ⋅ 𝐸𝐶𝐹 , from
which follows ⟨𝑃𝑇 ⟩𝑙𝑖𝑔ℎ𝑡 ∝ (𝑉𝑏𝑖𝑎𝑠 − 𝑉𝑏𝑑 )

𝑛𝑙𝑖𝑔ℎ𝑡−1. Here the average of 𝑃𝑇 is
taken over the region in which the photons are absorbed, which extends
only to ≈ 0.1 μm from the entrance window for the blue light used. Thus
𝑛𝑝ℎ𝑜𝑡𝑜−1 is related to 𝑃𝑇 (𝑉𝑏𝑖𝑎𝑠) at the SiPM entrance window, and 𝑛𝑑𝑎𝑟𝑘−1
to 𝑃𝑇 (𝑉𝑏𝑖𝑎𝑠) in the entire depletion region. This information can be used
to validate simulations of the position dependence of 𝑃𝑇 for different
𝑉𝑏𝑖𝑎𝑠 values.

Another approach of determining 𝑉𝑏𝑑 is presented in Refs. [19,39].
The measured voltage dependence of 𝑃𝐷𝐸 is fitted by the phenomeno-
logical function

𝑃𝐷𝐸(𝑉𝑏𝑖𝑎𝑠) = 𝑃𝐷𝐸𝑚𝑎𝑥
(

1 − 𝑒−O⋅𝑉𝑟𝑒𝑙
)

with 𝑉𝑟𝑒𝑙 =
𝑉𝑏𝑖𝑎𝑠 − 𝑉𝑏𝑑

𝑉𝑏𝑑
, (14)

with the phenomenological parameter O. The measurement of the 𝑃𝐷𝐸
will be described in Section 4.4. The values found for 𝑉𝑏𝑑 agree with
the values found using the methods described above, however the
uncertainty is significantly larger. The authors point out that in first
approximation O does not depend on the width of the multiplication
region and conclude that the wavelength dependence O(𝜆) reflects the
position dependence of 𝑃𝑇 . These results still have to be compared to
simulations using the formulae given in Ref. [6] with realistic electric
fields, or TCAD or Monte Carlo programs. In Ref. [7] a similar approach
is followed: 𝑃𝐷𝐸(𝑉𝑏𝑖𝑎𝑠) is fitted with the dependence derived assuming
that all electron–hole pairs are generated at the SiPM entrance window

and a constant electric field in the depletion region of effective width
𝑤𝑒𝑓𝑓 . The values found for 𝑉𝑏𝑑 are again compatible with the values
using the 𝐼(𝑉𝑏𝑖𝑎𝑠) methods.

The turn-off voltage, 𝑉𝑜𝑓𝑓 , is obtained from the voltage dependence
of the SiPM gain, 𝐺(𝑉𝑏𝑖𝑎𝑠) ≈ (𝐶𝑑 + 𝐶𝑞) ⋅ (𝑉𝑏𝑖𝑎𝑠 − 𝑉𝑜𝑓𝑓 ), by fitting a
straight line to the data and extrapolating to 𝐺(𝑉𝑜𝑓𝑓 ) = 1. Examples
for 𝐺(𝑉𝑏𝑖𝑎𝑠) for the KETEK SiPM with pitch values between 15 μm and
100 μm and the corresponding straight-line fits are shown in Fig. 17a.
The determination of 𝐺 and of the fluctuations of 𝑉𝑜𝑓𝑓 is discussed in
Section 4.4.

In Fig. 17b the differences 𝑉𝑏𝑑 −𝑉𝑜𝑓𝑓 for the different pitch values of
the KETEK SiPMs are shown. The 𝑉𝑏𝑑 value from 𝐼(𝑉𝑏𝑖𝑎𝑠) is labelled VI,
and the one from 𝑃𝐷𝐸, VPD. The symbol used for 𝑉𝑜𝑓𝑓 from 𝐺(𝑉𝑏𝑖𝑎𝑠)
is labelled VG. The values found from VI and VPD are compatible,
confirming that they both determine 𝑉𝑏𝑑 . However they differ from the
values from VG, which determines 𝑉𝑜𝑓𝑓 . The difference is approximately
1 V for the SiPM with 15 μm pixels and decreases with increasing pixel
size. The reason for this dependence is not understood, however to the
author’s knowledge no simulations with realistic 3-D electric fields have
been performed so far.

For the determination of 𝑉𝑜𝑓𝑓 , instead of 𝐺 derived from charge
spectra, 𝐺 from the pulse amplitude can also be used. The results
obtained are compatible. Given the sensitivity of the amplitude to
the band-width of the readout, in particular in the presence of a fast
component, this method is not recommended.

In summary: A difference of up to 1 V between 𝑉𝑏𝑑 and 𝑉𝑜𝑓𝑓 has
been observed for a KETEK SiPM with a pitch of 15 μm. For larger
pitch values, the difference decreases. For the gain the relevant voltage
is 𝑉𝑜𝑓𝑓 , i.e. 𝐺 ∝ (𝑉𝑏𝑖𝑎𝑠 − 𝑉𝑜𝑓𝑓 ). To avoid confusion, in publications it
should be clearly stated, which voltage, 𝑉𝑏𝑑 or 𝑉𝑜𝑓𝑓 , is used.
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Fig. 18. Photon-detection efficiencies 𝑃𝐷𝐸(𝑉𝑏𝑖𝑎𝑠 , 𝜆) as a function of 𝑉𝑏𝑖𝑎𝑠 and the wavelength 𝜆 of the light, for two SiPMs from Ref. [19]. The vertical lines denote the bias voltage at
which 90% of the maximum 𝑃𝐷𝐸 is reached. The pixel pitch is 30 μm for the FBK SiPM, and 50 μm for the Hamamatsu SiPM. In addition, the design of the two SiPMs is different and
optimised for different wavelengths, which has to be taken into account when judging the PDE dependencies.

Fig. 19. 𝑃𝐷𝐸 as a function of wavelength between 200 nm and 1000 nm for three SiPMs
from Ref. [19]. 𝑉𝑏𝑖𝑎𝑠 has been adjusted to give a Geiger-breakdown probability 𝑃𝑇 ≈ 90 %.

4.4. Photon-detection efficiency, number of primary Geiger discharges and
gain

If peaks corresponding to different numbers of Geiger discharges,
𝑁𝐺, can be separated in the charge or amplitude spectra, the 𝑉𝑏𝑖𝑎𝑠
dependence of the relative 𝑃𝐷𝐸 can be obtained from 𝑓0, 𝑙𝑖𝑔ℎ𝑡 and from
𝑓0, 𝑑𝑎𝑟𝑘 using Eq. (7). Fig. 18, taken from Ref. [19], shows the 𝑉𝑏𝑖𝑎𝑠
dependence of 𝑃𝐷𝐸 for a number of wavelengths for two SiPMs. The
relative values are obtained with the method described above.

The determination of the absolute 𝑃𝐷𝐸 uses calibrated photo-
diodes, as already discussed in Section 3.4. There are several setups,
both at producers and at research laboratories, which measure the
absolute 𝑃𝐷𝐸 of SiPMs as function of wavelength and 𝑉𝑏𝑖𝑎𝑠 with an
accuracy of a few %. Examples from Ref. [19] of the 𝑉𝑏𝑖𝑎𝑠 dependence
of the absolute 𝑃𝐷𝐸 are shown in Fig. 18, and of the wavelength
dependence at a Geiger-breakdown probability 𝑃𝑇 ≈ 90%, in Fig. 19.
The accuracy achieved in these measurements is impressive, and so is
the increase in 𝑃𝐷𝐸 achieved by the producers in recent years.

Next, different methods of determining the SiPM gain are discussed.
The most straight-forward method of measuring the gain, 𝐺∗(𝑉𝑏𝑖𝑎𝑠),
of the combined system SiPM–readout, is to record charge spectra, as
shown in Fig. 3, and determine the distance between the peaks corre-
sponding to different number of Geiger discharges. Several methods are
used:

1. Fit individual peaks by Gauss functions and determine the dis-
tance between them.

2. Determine the distance using the Fourier transformed spectrum
(Ref. [23]).

3. Perform a complete fit of the spectrum with 𝐺∗ as one of the free
parameter of the fit (Ref. [11]).

All three methods give very precise and compatible results, and it is
matter of taste and convenience which one to use. However, they all
require that 0, 1, 2, etc. are well separated.

In addition to 𝐺, the rms width 𝜎𝑁𝐺
of the peaks corresponding

to different number of Geiger discharges, 𝑁𝐺, can be obtained from
the spectra. As expected and observed, the data can be described by
𝜎2𝑁𝐺

(𝑉𝑏𝑖𝑎𝑠) = 𝜎20 + 𝑁𝐺 ⋅ 𝜎21 (𝑉𝑏𝑖𝑎𝑠), with 𝜎0 the contribution from the
electronics noise and 𝜎1(𝑉𝑏𝑖𝑎𝑠) the contribution from the fluctuations
of 𝐺 for single Geiger discharges. For the KETEK SiPM investigated in
Ref. [11] it is found that 𝜎1 has only a weak 𝑉𝑏𝑖𝑎𝑠 dependence: Between
𝑉𝑏𝑖𝑎𝑠 = 30 V and 35 V it increases by ≈ 20 % only. For this SiPM
𝑉𝑏𝑑 = 26.64 V at 20 ◦C. As 𝐺 = (𝐶𝑑 + 𝐶𝑞) ⋅ (𝑉𝑏𝑖𝑎𝑠 − 𝑉𝑜𝑓𝑓 ), there are two
contributions to 𝜎1. One from the pixel-to-pixel variations of 𝐶𝑑 + 𝐶𝑞 ,
called 𝛿𝐶, and one from the fluctuations of 𝑉𝑜𝑓𝑓 , called 𝛿𝑉𝑜𝑓𝑓 . The two
terms can be distinguished using the 𝑉𝑏𝑖𝑎𝑠 dependence of 𝜎1. Using the
measured slope d𝐺∕d𝑉𝑏𝑖𝑎𝑠 and the definition of 𝐺, one finds:

𝜎21 =
( d𝐺
d𝑉𝑏𝑖𝑎𝑠

)2
⋅ 𝛿𝑉 2

𝑜𝑓𝑓 +
( d𝐺
d(𝐶𝑑 + 𝐶𝑞)

)2
⋅ 𝛿𝐶2 =

(

𝐶𝑑 + 𝐶𝑞
)2

⋅ 𝛿𝑉 2
𝑜𝑓𝑓

+
(

𝑉𝑏𝑖𝑎𝑠 − 𝑉𝑜𝑓𝑓
)2

⋅ 𝛿𝐶2. (15)

As 𝜎1 is approximately independent of 𝑉𝑏𝑖𝑎𝑠, the second term is small
and: 𝛿𝑉𝑜𝑓𝑓 ≈ 𝜎1∕(𝐶𝑑 +𝐶𝑞), giving 𝛿𝑉𝑜𝑓𝑓 ≈ 175 mV for the data from Ref.
[11]. It is concluded that the increase of the width of the peaks in the
SiPM charge (or amplitude) spectra is caused by differences in 𝑉𝑜𝑓𝑓 and
not by differences in pixel capacitances. The reason for the rather large
value of 𝛿𝑉𝑜𝑓𝑓 could be differences of the 3-D electric field distribution
within a pixel. To the author’s knowledge, no realistic simulations of
𝑉𝑜𝑓𝑓 and 𝛿𝑉𝑜𝑓𝑓 have been performed so far.

If 𝑁𝐺 = 0, 1, 2, . . . peaks cannot be separated, the gain, 𝐺∗, and the
mean number of primary Geiger discharges, ⟨𝑁𝑝𝐺⟩, can nevertheless
be determined from the mean, ⟨𝑄⟩, and the root-mean square, 𝜎𝑄, of
the measured charge (or amplitude) distribution if the excess charge
factor, 𝐸𝐶𝐹 , and the excess noise factor, 𝐸𝑁𝐹 , are known. The method
is an extension of the well known method used to determine the
gain, 𝐺∗, and the mean number of photo-electrons, ⟨𝑁𝑝𝑒⟩, for vacuum
photomultipliers, which are (incorrectly) assumed to be ideal photon-
detectors with 𝐸𝐶𝐹 = 𝐸𝑁𝐹 = 1. For the ideal photomultiplier the
distribution of the photo-electrons generated by the pulsed light is
assumed to follow a Poisson distribution, for which both mean and
variance are equal to ⟨𝑁𝑝𝑒⟩. With the gain 𝐺∗, the mean of the measured
charge distribution becomes ⟨𝑄𝑃 ⟩ = 𝑞0 ⋅ 𝐺∗ ⋅ ⟨𝑁𝑝𝑒⟩, and the square of
the rms spread 𝜎2𝑃 = 𝑞20 ⋅ 𝐺

∗ 2 ⋅ ⟨𝑁𝑝𝑒⟩. The subscript 𝑃 , which stands for
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Fig. 20. Comparison of (a) the average number of primary Geiger discharges, 𝜇 ≡ ⟨𝑁𝑝𝐺⟩, and (b) the gain 𝐺∗ from a fit to the measured charge spectrum (measured) with the method
of the moments of the charge distribution (calculated) using Eq. (19). The figure is from Ref. [11], which also gives the corresponding values of 𝐸𝐶𝐹 and 𝐸𝑁𝐹 .

Poisson, refers to the ideal detector. From these two equations follows:

𝐺∗ =
𝜎2𝑃

𝑞0 ⋅ ⟨𝑄𝑃 ⟩
and ⟨𝑁𝑝𝑒⟩ =

⟨𝑄𝑃 ⟩
2

𝜎2𝑃
. (16)

For a non-ideal SiPM, 𝐸𝐶𝐹 and 𝐸𝑁𝐹 , defined in Eqs. (4) and (5),
have to be taken into account, which results in

⟨𝑄⟩ = 𝐸𝐶𝐹 ⋅ ⟨𝑄𝑃 ⟩ = 𝐸𝐶𝐹 ⋅ 𝑞0 ⋅ 𝐺
∗ ⋅ ⟨𝑁𝑝𝐺⟩, and (17)

𝜎2𝑄 = 𝐸𝐶𝐹 2 ⋅ 𝐸𝑁𝐹 ⋅ ⟨𝑄𝑃 ⟩ = 𝐸𝐶𝐹 2 ⋅ 𝐸𝑁𝐹 ⋅ 𝑞20 ⋅ 𝐺
∗ 2 ⋅ ⟨𝑁𝑝𝐺⟩, (18)

where for the SiPM the mean number of photo-electrons of the vacuum
photomultiplier, ⟨𝑁𝑝𝑒⟩, has been replaced by the mean number of
primary Geiger discharges ⟨𝑁𝑝𝐺⟩. Solving the two equations for 𝐺∗ and
⟨𝑁𝑝𝐺⟩ gives

𝐺∗ =
𝜎2𝑄

𝑞0 ⋅ ⟨𝑄⟩ ⋅ 𝐸𝐶𝐹 ⋅ 𝐸𝑁𝐶
and ⟨𝑁𝑝𝐺⟩ =

⟨𝑄⟩

2 ⋅ 𝐸𝑁𝐹
𝜎2𝑄

. (19)

A method to determine 𝐸𝐶𝐹 and 𝐸𝐶𝑁 is presented in Section 4.5.
In Ref. [11] the results for ⟨𝑁𝑝𝐺⟩ and 𝐺∗ determined by a fit to the

charge distribution are compared to the ones from ⟨𝑄⟩ and 𝜎𝑄 for the
KETEK SiPM with 15 μm pitch illuminated with a pulsed LED. Fig. 20
shows the results. For both ⟨𝑁𝑝𝐺⟩ and 𝐺∗ the agreement is within a
few percent, demonstrating the validity of the method. This method is
straight-forward to use and suitable for the in-situ calibration and the
monitoring of large numbers of SiPMs. It is used routinely in Ref. [40].
It should be noted that in the case of significant noise, the width of the
𝑁𝐺 = 0 peak has to be subtracted quadratically from 𝜎𝑄. In addition,
it should be mentioned that the method as described does not work if
the response of the system SiPM–readout is non-linear. But it is straight-
forward to extend the method to non-linear regions, which, however, to
the author’s knowledge, has not yet been reported.

4.5. Nuisance parameters: Dark-count rate and correlated noise

Compared to an ideal photon-detector, the SiPM performance is
affected by a number of nuisance sources, in particular random dark
counts and pulses correlated with primary discharges. The different
types of nuisance parameters have been discussed in Section 2. The best
way to study them in detail, is to record current transients without or
with low-intensity illumination. The analysis and results presented in
Ref. [19] will be discussed next. The analysis procedure used follows
closely the one reported in Ref. [13]. Similar analyses are reported in
Refs. [41–43].

In Ref. [19] the transients are differentiated by subtracting a copy
of the transient shifted by 3 ns (see Fig. 21a). In this way the pulse
tails are removed and the pulses have a full width of about 9 ns.

Next the undershoot is removed by applying a background-subtraction
algorithm, and pulses with an amplitude exceeding 0.5 pe (pe = the
average amplitude of a single Geiger discharge) are marked. Finally
pulses corresponding to single Geiger discharges are selected, and the
time difference 𝛥𝑡 to the following pulse versus its amplitude plotted,
as shown in Fig. 21b. Note that the 𝛥𝑡 scale and the 𝛥𝑡 bin widths are
logarithmic.

Dark counts without correlated noise have an average amplitude
corresponding to one Geiger discharge. They appear as horizontal line
around pe = 1. Dark-count pulses with one or two prompt optical cross-
talk pulses, each with an amplitude of 1 pe, appear as horizontal lines
at pe = 2 and 3, respectively. After-pulses have an amplitude which
increases with time due to the recharging of the pixel (see also Fig. 4b).
Pulses with delayed optical cross-talk are the sum of the decaying pulse
of the primary Geiger discharge and one or two optical cross-talk pulses,
each with an amplitude of 1 pe. Their amplitudes decrease towards pe
= 1 or 2 with increasing 𝛥𝑡. By selecting events in the different regions,
all nuisance parameters can be determined in a quantitative way. In the
following a few examples are given.

The total dark-count rate, 𝐷𝐶𝑅, can be approximately determined
by counting all pulses and dividing the number by the total duration
of all analysed transients. 𝐷𝐶𝑅 is given by the primary dark count
rate plus the effects of after-pulses and delayed optical cross-talk. A
more precise procedure is to analyse the 𝛥𝑡 distribution, d𝑁∕d𝛥𝑡, which
for random dark pulses at the rate 𝐷𝐶𝑅 is expected to have the form
d𝑁∕d(𝛥𝑡) ∝ 𝑒−(𝛥𝑡⋅𝐷𝐶𝑅). This dependence follows from the properties of
the Poisson distribution: The mean number of dark counts (𝐷𝐶) in the
time interval 𝛥𝑡 is ⟨𝑁(𝛥𝑡)⟩ = 𝐷𝐶𝑅 ⋅ 𝛥𝑡, and the probability of zero
𝐷𝐶s in 𝛥𝑡 is 𝑃 (0, 𝛥𝑡) = 𝑒−(𝛥𝑡⋅ 𝐷𝐶𝑅). The absolute value of the derivative
|d𝑃 (0, 𝛥𝑡)∕d(𝛥𝑡)| = 𝐷𝐶𝑅 ⋅ 𝑒−(𝛥𝑡⋅𝐷𝐶𝑅) is proportional to the probability of
the change from 0 to ≥ 1 𝐷𝐶s, thus the occurrence of a 𝐷𝐶 at 𝛥𝑡. The
𝛥𝑡 distribution for random dark counts, when plotted in bins of ln(𝛥𝑡),
is ∝ 𝛥𝑡 ⋅ 𝑒−(𝛥𝑡⋅𝐷𝐶𝑅) with the maximum at 𝛥𝑡𝑚𝑎𝑥 = 1∕𝐷𝐶𝑅. This can be
clearly seen in Fig. 21b.

Fig. 22a shows an example of a d𝑁∕d(ln(𝛥𝑡)) distribution with a fit
of the expected 𝐷𝐶 dependence for 𝛥𝑡 > 200 ns. At lower 𝛥𝑡 values
the effects of correlated pulses are clearly visible. In Refs. [21,30] the
𝛥𝑡 distribution in linear 𝛥𝑡 scale is fitted to the sum of 𝐷𝐶s and after-
pulses with exponential time distributions. If only 𝐷𝐶s and after-pulses
are considered, the expected 𝛥𝑡 distribution can be derived by replacing
⟨𝑁(𝛥𝑡)⟩ = 𝐷𝐶𝑅 ⋅ 𝛥𝑡 valid in the absence of after-pulses and delayed
cross-talk, by ⟨𝑁(𝛥𝑡)⟩ = 𝐷𝐶𝑅 ⋅ 𝛥𝑡 + 𝜀𝐴𝑃 ⋅ (1 − 𝑒−𝛥𝑡∕𝜏𝐴𝑃 ) for one state,
with the probability of after-pulses, 𝜀𝐴𝑃 , and the time constant 𝜏𝐴𝑃 .
Differentiation of 𝑃 (0, 𝛥𝑡) = 𝑒−⟨𝑁(𝛥𝑡)⟩ with respect to 𝛥𝑡 gives the 𝛥𝑡
dependence. Fig. 22b shows an example of such an analysis from Ref.
[30], which shows that the data are well described by the model and
that 𝐷𝐶𝑅, 𝜀𝐴𝑃 and 𝜏𝐴𝑃 are determined with good accuracy. Delayed
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Fig. 21. Analysis and results for the determination of the nuisance parameters using current transient measurements from Ref. [19]. (a) A SiPM transient recorded with 1 GS/s and 8 bit
resolution (raw), after subtraction of the transient shifted by 3 ns (delayed and subtracted), and after the undershoot correction (background subtracted). (b) 2-D plot of the number of
events in bins of the logarithm of the time difference between two consecutive SiPM pulses (x axis) and the amplitude of the second pulse (y axis), after selecting pulses corresponding
to single Geiger discharges (1 pe) for the first pulse. As explained in the text and indicated on the figure, dark counts and the different types of correlated noise events can be classified
and identified.

Fig. 22. (a) Time difference 𝛥𝑡 in logarithmic 𝛥𝑡 scale from Ref. [19]. The solid line is a fit for 𝛥𝑡 > 200 ns by 𝛥𝑡 ⋅𝑒−(𝛥𝑡⋅𝐷𝐶𝑅), the expected shape for random dark-count pulses in log(𝛥𝑡) bins.
The maximum of the peak is at 1∕𝐷𝐶𝑅. (b) Top: Time-difference distribution in linear 𝛥𝑡 scale for a Hamamatsu SiPM from Ref. [30]. The solid lines are fits of the sum of dark counts and
after-pulses for 𝛥𝑡 > 50 ns, where the algorithm for the identification of after-pulses is fully efficient. The essentially straight line is the contribution of dark counts. Bottom: Difference
(data – fit) /data.

cross-talk can be implemented in a similar way, if a parametrisation for
its time dependence is available.

The 𝐷𝐶𝑅 can also be obtained from charge or amplitude spectra
measured without illumination, as the one shown in Fig. 3a, using the
relation

𝐷𝐶𝑅 = −
ln(𝑓0.5, 𝑑𝑎𝑟𝑘)

𝑡𝑔𝑎𝑡𝑒
, (20)

with 𝑓0.5, 𝑑𝑎𝑟𝑘, the fraction of events with a charge exceeding half the
signal of a single Geiger discharge (1/2 pe), and 𝑡𝑔𝑎𝑡𝑒 the gate width used
for the current integration. As gate and dark pulses are uncorrelated in
time, the charge spectrum contains pulses with different overlaps with
the gate, resulting in signals between the 𝑁𝐺 = 0 and the 𝑁𝐺 = 1 peak.
In Ref. [11] it is shown, that only for 𝑓0.5, 𝑑𝑎𝑟𝑘 Eq. (20) is exact. If a
lower or a higher threshold than 0.5 pe is chosen, the value for 𝑡𝑔𝑎𝑡𝑒 in
Eq. (20) has to be decreased or increased with respect to the actual 𝑡𝑔𝑎𝑡𝑒.
Thus fitting the 𝑁𝐺 = 0 peak and using the fraction of events in the peak
instead of 𝑓0.5, 𝑑𝑎𝑟𝑘, which is frequently done, is only approximate and

should be avoided. In cases where the tail of the zero-Geiger discharge
peak results in a significant fraction of events above 0.5 pe, these events
have to be subtracted when determining 𝑓0.5, 𝑑𝑎𝑟𝑘. It should be noted
that after-pulses and delayed cross-talk result in a systematic bias of
this 𝐷𝐶𝑅 determination. It is estimated that the effect is small, but a
systematic study is not known to the author.

To summarise: The 𝑓0.5, 𝑑𝑎𝑟𝑘 method is straight-forward and recom-
mended for determining the 𝐷𝐶𝑅, but has a bias, which however in
most practical cases will be small. For a more precise determination,
the 𝛥𝑡 method described above should be used.

The methods described so far can only be applied if peaks corre-
sponding to different number of Geiger discharges can be distinguished.
Determining 𝐷𝐶𝑅 when this is not the case, is significantly more
complex and a number of assumptions have to be made in the analysis.
Fig. 23, which shows current transients with low light for a SiPM before
irradiation (a), and after irradiation (b), shows the problem. Whereas in
(a) it is straight-forward to analyse the single Geiger discharge pulse, this
is impossible for (b), which shows wild fluctuations with amplitudes,
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Fig. 23. Transients recorded with a KETEK PM15 SiPM at 29.4 V and −30 ◦C for (a) before irradiation, and (b) after irradiation by neutrons to a fluence of 5 × 1013 cm−2 causing a
𝐷𝐶𝑅 ≈ 3 GHz.

which are larger by one order of magnitude. Transients, as shown in
Fig. 23b, can be reproduced by a simple Monte Carlo simulation by
adding 𝐷𝐶𝑅 ⋅𝛥𝑡𝑡𝑟𝑎𝑛𝑠 pulses as shown in Fig. 23a randomly distributed in
the time interval of the transient, 𝛥𝑡𝑡𝑟𝑎𝑛𝑠. For estimating 𝐷𝐶𝑅 in such
a situation, two methods will be described. One uses the measured
dark current, 𝐼𝑑𝑎𝑟𝑘, the other 𝜎𝑑𝑎𝑟𝑘, the rms of the charge distribution
measured without illumination. These methods are discussed in Ref.
[44] and used in Ref. [15] to characterise radiation-damaged SiPMs.
At high 𝐷𝐶𝑅 values, 𝐼𝑑𝑎𝑟𝑘 can exceed several mA and an AC-coupled
readout is typically used, so that the average current is zero and contains
no information. In addition, the high current results in a significant
power dissipation causing an uncertainty in the knowledge of the SiPM
temperature.

𝐼𝑑𝑎𝑟𝑘 is related to the primary dark count rate 𝐷𝐶𝑅𝑝 by

𝐼𝑑𝑎𝑟𝑘 = 𝑞0 ⋅ 𝐺 ⋅ 𝐸𝐶𝐹 ⋅𝐷𝐶𝑅𝑝 = 𝑞0 ⋅ (𝐶𝑑 + 𝐶𝑞) ⋅ (𝑉𝑏𝑖𝑎𝑠 − 𝑉𝑜𝑓𝑓 )

⋅𝐸𝐶𝐹 ⋅𝐷𝐶𝑅𝑝, (21)

from which follows

𝐷𝐶𝑅𝑝(𝑉𝑏𝑖𝑎𝑠) =
𝐼𝑑𝑎𝑟𝑘

𝐸𝐶𝐹 (𝑉𝑏𝑖𝑎𝑠) ⋅ 𝑞0 ⋅ (𝐶𝑑 + 𝐶𝑞) ⋅ (𝑉𝑏𝑖𝑎𝑠 − 𝑉𝑜𝑓𝑓 )
. (22)

𝐶𝑑 and 𝐶𝑞 can be determined from 𝑌 − 𝑓 (Section 4.1), and 𝑉𝑏𝑑 from
𝐼 − 𝑉 measurements (Section 4.3). If the approximation 𝑉𝑜𝑓𝑓 ≈ 𝑉𝑏𝑑 is
made, which is valid for 𝑉𝑂𝑉 ≫ 𝑉𝑏𝑑−𝑉𝑜𝑓𝑓 , 𝐸𝐶𝐹 ⋅𝐷𝐶𝑅𝑝 can be obtained
using Eq. (22). As 𝐸𝐶𝐹 is typically ≲ 1.2, 𝐸𝐶𝐹 ⋅ 𝐷𝐶𝑅𝑝 is already a
quite good approximation to 𝐷𝐶𝑅. An alternative, which is used in Refs.
[15,44] for the study of radiation damage, is to assume that 𝐸𝐶𝐹 and
𝑉𝑏𝑑 − 𝑉𝑜𝑓𝑓 do not change with irradiation, and determine 𝑉𝑏𝑑 from the
𝐼 − 𝑉 measurements. The validity and accuracy of these assumptions
has not been checked so far.

Next, the determination of 𝐷𝐶𝑅𝑝 from the measurement of the
rms-spread, 𝜎𝑑𝑎𝑟𝑘, of the charge (or amplitude) distribution measured
without illumination, will be discussed. Fig. 24a shows charge spectra
measured with a gate width 𝑡𝑔𝑎𝑡𝑒 = 75 ns without illumination for the
KETEK PM15 SiPM irradiated by neutrons to different fluences up to
5× 1014 cm−2. As discussed in detail in Ref. [15], the dominant effect of
radiation damage is the increase of 𝐷𝐶𝑅 by many orders of magnitude.
One sees that 𝜎𝑑𝑎𝑟𝑘 first increases with fluence, and above a fluence of
5 × 1013 cm−2 decreases. For high 𝐷𝐶𝑅 values many pixels are already
busy with Geiger discharges, and this high occupancy is responsible for
the decrease of 𝜎𝑑𝑎𝑟𝑘. The formula used to extract 𝐷𝐶𝑅𝑝 from 𝜎𝑑𝑎𝑟𝑘 is:

𝜎2𝑑𝑎𝑟𝑘 =
(

(𝑞0 ⋅ 𝐺)2 ⋅ 𝐸𝑁𝐹 ⋅ 𝐸𝐶𝐹 2 ⋅𝐷𝐶𝑅𝑝
)

⋅
(

𝑡𝑔𝑎𝑡𝑒 − 𝜏𝑟 ⋅ (1 − 𝑒−𝑡𝑔𝑎𝑡𝑒∕𝜏𝑟 )
)

. (23)

It is derived in the Appendix, under the assumption that the SiPM
current pulse for a Geiger discharge at time 𝑡0 is described by 𝐼(𝑡) ∝

𝑒−(𝑡−𝑡0)∕𝜏𝑟 for 𝑡 ≥ 𝑡0. An extension to other pulse shapes is straight-
forward inserting the functional form of 𝑓 (𝑡) in Eq. (27). To verify the
predicted 𝑡𝑔𝑎𝑡𝑒 dependence, Fig. 24b compares the measured 𝜎2𝑑𝑎𝑟𝑘(𝑡𝑔𝑎𝑡𝑒)
(symbols) to fits by Eq. (23) (solid lines) with 𝜏𝑟 and the term in the
parenthesis on the left side, as free parameters. The dependence of
𝐸𝐶𝐹 and 𝐸𝑁𝐹 on 𝑡𝑔𝑎𝑡𝑒 has been neglected in the fits. Up to a fluence
of 1013 cm−2 the data are well described, and allow to determine 𝜏𝑟
with an accuracy of about 10%. For fluences exceeding 1013 cm−2,
the quality of the fit worsens because of the high pixel occupancy
at high 𝐷𝐶𝑅. For low 𝐷𝐶𝑅, 𝜎𝑑𝑎𝑟𝑘 is dominated by electronics noise,
which has to be subtracted quadratically from 𝜎𝑑𝑎𝑟𝑘. If the electronics
noise dominates, the method becomes unreliable. A formula, which
takes into account the reduction of 𝜎𝑑𝑎𝑟𝑘 due to pixels occupied by
dark counts, still has to be derived. In order to determine 𝐷𝐶𝑅𝑝 from
Eq. (23), assumptions for 𝐺, 𝐸𝐶𝐹 and 𝐸𝐶𝑁 have to be made. For
the determination of 𝐺∗, when peaks corresponding to different Geiger
discharges cannot be distinguished, Eq. (19) can be used. For the
determination of 𝐸𝐶𝐹 and 𝐸𝑁𝐹 no method is known to the author, if
peaks corresponding to different number of Geiger discharges cannot be
distinguished. However, in most practical cases the problem of merging
peaks is either the result of ambient light or of radiation damage. In these
cases, 𝐸𝐶𝐹 and 𝐸𝑁𝐹 can be measured initially, and the assumption
made that the values do not change for the conditions in which the SiPM
is finally used. The validity of these assumptions for radiation damage
still has to be demonstrated.

In Ref. [15], 𝐷𝐶𝑅𝑝 is determined as a function of the neutron
fluence using the measured 𝐼𝑑𝑎𝑟𝑘 and Eq. (23), assuming for 𝐸𝐶𝐹 and
𝐸𝑁𝐹 the values of the non-irradiated SiPM. The results are compared
to the 𝐷𝐶𝑅𝑝 results using Eq. (22), assuming 𝐸𝐶𝐹 and 𝑉𝑏𝑑 − 𝑉𝑜𝑓𝑓
from the non-irradiated SiPM and the values of 𝑉𝑏𝑑 from the 𝐼 − 𝑉
analyses for the different neutron fluences. In the range of the validity
of the 𝜎𝑑𝑎𝑟𝑘 method an agreement to better than 30% is observed,
which is considered satisfactory for 𝐷𝐶𝑅 values exceeding several
GHz. A detailed comparison of the methods and their sensitivity to the
assumptions used is still missing.

To summarise this subsection on the 𝐷𝐶𝑅 and 𝐷𝐶𝑅𝑝 determination:
If the 𝐷𝐶𝑅 is sufficiently low and the peaks for different number of
Geiger discharges can be distinguished, the different methods, counting
the dark-counts in the transients, analysing the time-difference 𝛥𝑡, and
the 𝑓0.5, 𝑑𝑎𝑟𝑘 method, are straight-forward and give reliable results. For
𝐷𝐶𝑅 values approaching or exceeding 1∕𝜏𝑟, the pixel-recharging time
constant (typically between 15 and 200 ns), the situation becomes sig-
nificantly more complicated. Based on ongoing studies, the preliminary
conclusion is that for high 𝐷𝐶𝑅s using 𝐼𝑑𝑎𝑟𝑘 and Eq. (22) is the most
reliable method to determine 𝐷𝐶𝑅𝑝. This method however, requires
the knowledge of 𝐺 and 𝐸𝐶𝐹 . For 𝐺 it is recommended to use 𝐺 =
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Fig. 24. (Colour online) (a) Charge spectra measured at −30 ◦C in the dark for KETEK MP15 SiPMs after irradiation to different neutron fluences, 𝛷. Measurements and figure are from
S. Cerioli, Hamburg University. (b) Variances, 𝜎2

𝑑𝑎𝑟𝑘, of the charge spectra as a function of the gate width, 𝑡𝑔𝑎𝑡𝑒. The symbols are the data, and the lines the fits by Eq. (23) with 𝜏𝑟 and the
term in the left parenthesis of Eq. (23) as free parameters. Solid lines represent good, and dotted lines poor description of the data by the fit.

(𝐶𝑞 +𝐶𝑑 ) ⋅ (𝑉𝑏𝑖𝑎𝑠−𝑉𝑜𝑓𝑓 ), with 𝐶𝑑 +𝐶𝑞 from 𝑌 −𝑓 (admittance-frequency)
measurements for 𝑉𝑏𝑖𝑎𝑠 0.5 to 1 V below 𝑉𝑏𝑑 . For 𝑉𝑜𝑓𝑓 , 𝑉𝑏𝑑 can be used,
which however is a poor assumption for small 𝑉𝑂𝑉 values if 𝑉𝑏𝑑 differs
significantly from 𝑉𝑜𝑓𝑓 . If the difference 𝑉𝑏𝑑−𝑉𝑜𝑓𝑓 can be determined for
a low DCR, then the assumption of a constant difference can be made,
and 𝑉𝑏𝑑 obtained from 𝐼𝑑𝑎𝑟𝑘 −𝑉𝑏𝑖𝑎𝑠 measurements. To better understand
the effects of high 𝐷𝐶𝑅, the following study is recommended: For
a SiPM, with properties precisely determined using the methods of
individual Geiger discharges, different 𝐷𝐶𝑅 values can be simulated
by DC-light of variable intensity illuminating uniformly the SiPM. In
this way the different methods can be compared and the most suitable
determined.

Cross-talk, after-pulses, ECF, ENF and optimal resolution
Fig. 21b shows the 2-D distribution of the time between pulses, 𝛥𝑡,

versus pulse amplitude, which allows identifying the different physical
effects responsible for the nuisance parameters. Analysing separately the
different event classes allows to study their rate and properties. These
studies as a function of 𝑉𝑏𝑖𝑎𝑠 and temperature are essential for under-
standing the different effects and proposing technological modifications
of the fabrication process to improve the SiPM performance. They also
provide input for the development of realistic SiPM models. An example
is given in Fig. 22 with the discussion on the extraction of after-pulses
and delayed cross-talk.

However, as long as saturation effects can be ignored, for most users
the knowledge of 𝐷𝐶𝑅, 𝐺∗, 𝐸𝐶𝐹 and 𝐸𝑁𝐹 as a function of 𝑉𝑏𝑖𝑎𝑠 of
the SiPMs will be sufficient to characterise the SiPM and determine the
optimal operating conditions. These parameters depend not only on the
SiPM properties, but also on the readout used. As an example: A shorter
integration of the SiPM current, results in a reduction of 𝐺∗, 𝐸𝐶𝐹 and
𝐸𝑁𝐹 .

The most direct way to determine these parameters uses two charge
spectra: One recorded in the dark (𝑄𝑑𝑎𝑟𝑘), and one with low-intensity
light (Q), so that the fraction of events in the peak for zero Geiger
discharges can be measured precisely. In the following it is assumed
that the mean of the zero-Geiger discharge peak corresponds to zero
charge. 𝐷𝐶𝑅 is obtained using Eq. (20) from the 𝑄𝑑𝑎𝑟𝑘 spectrum and
𝐺∗ from the distance between the peaks of the 𝑄 spectrum, as discussed
in Section 4.4. The mean number of primary Geiger discharges due to
photons from the light source, ⟨𝑁𝑝𝐺, 𝑝ℎ𝑜𝑡𝑜⟩, is obtained from Eq. (7).
𝐸𝐶𝐹 is obtained from the ratio of the mean of the measured charge
distribution ⟨𝑄⟩ to the expectation for a Poisson distribution 𝑞0 ⋅ 𝐺∗ ⋅
⟨𝑁𝑝𝐺, 𝑝ℎ𝑜𝑡𝑜⟩, and 𝐸𝑁𝐹 from the ratio of the square of the rms-spread,
𝜎2𝑄, to the Poisson expectation (𝑞0 ⋅ 𝐺∗)2 ⋅ ⟨𝑁𝑝𝐺, 𝑝ℎ𝑜𝑡𝑜⟩:

𝐸𝐶𝐹 =
⟨𝑄⟩

𝑞0 ⋅ 𝐺∗ ⋅ ⟨𝑁𝑝𝐺, 𝑝ℎ𝑜𝑡𝑜⟩
and

𝐸𝑁𝐹 =
𝜎2𝑄

(𝑞0 ⋅ 𝐺∗)2 ⋅ ⟨𝑁𝑝𝐺, 𝑝ℎ𝑜𝑡𝑜⟩
.

(24)

The rms-spread 𝜎𝑑𝑎𝑟𝑘 allows to estimate the contribution of dark counts
to the 𝐸𝑁𝐹 .

To illustrate the use of 𝐸𝑁𝐹 , the calculation of the operating
voltage at which the photon resolution is optimal is presented. Inserting
⟨𝑁𝑝𝐺⟩ from Eq. (3) into Eqs. (17) and (18) one obtains for the relative
resolution
𝜎𝑄
⟨𝑄⟩

=

√

𝐸𝑁𝐹
𝑁𝛾 ⋅ 𝑃𝐷𝐸

. (25)

Both 𝐸𝑁𝐹 and 𝑃𝐷𝐸 increase with 𝑉𝑏𝑖𝑎𝑠. Whereas 𝑃𝐷𝐸 eventually
saturates, 𝐸𝑁𝐹 continues to increase, and the relative resolution has
a minimum. An example of such a dependence is given in Ref. [11].
As both 𝐸𝑁𝐹 and 𝐺∗ depend on the effective charge integration time,
Eq. (25) can also be used to optimise the readout electronics.

4.6. Non-linearity and saturation

For calorimetric measurements, e.g. in collider and astro-physics
experiments or in PET, the dynamic range, i.e. the range of 𝑁𝛾 , where
precise measurements are possible, is an essential parameter. High
gain, high 𝑃𝐷𝐸, single photon-detection and high dynamic range are
conflicting requirements, which can hardly be achieved simultaneously.
In this respect vacuum photomultipliers are superior to SiPMs. A major
complication is that all the nuisance parameters discussed so far enter in
one way or another into the dynamic range. In addition, the pulse shape
is expected to depend on the number of simultaneous Geiger discharges,
and because of the pixel recharging time constant, the dynamic range
depends on the time distribution of the photons. In spite of the high
relevance of the dynamic range, systematic studies so far are quite
scarce.

In Ref. [45] light from a laser with a wavelength of 404 nm and a
pulse-width of 32 ps has been used to investigate the dynamic range
of simultaneously arriving photons, up to a photon intensity at which
≈ 500 × 𝑁𝑝𝑖𝑥 Geiger discharges would be triggered simultaneously,
if the SiPM were linear. Four different SiPMs with 1 mm2 area and
𝑁𝑝𝑖𝑥 = 100, 400, 556 and 560 from Hamamatsu, Photonique and
Zecotec were investigated. Measured was the amplitude of the SiPM
pulse recorded with a digital scope as a function of the relative number
of photons, 𝑁𝛾, 𝑟𝑒𝑙, called 𝑁𝑠𝑒𝑒𝑑 in the paper. 𝑁𝛾, 𝑟𝑒𝑙 is proportional to
the current in a PIN photo-diode with a linear response, normalised
so that 𝑁𝛾, 𝑟𝑒𝑙 = ⟨𝑁𝐺⟩ for low light intensities, where the SiPMs are
known to be linear. The measurements were performed for 𝑉𝑏𝑖𝑎𝑠 − 𝑉𝑏𝑑
values between 0.5 V and 1.3 V. The way 𝑉𝑏𝑑 has been determined is
not reported in the paper. Fig. 25 shows the results. It is observed that at
high light intensities for all SiPMs the mean number of measured Geiger
discharges, ⟨𝑁𝐺⟩, significantly exceeds the number of pixels, 𝑁𝑝𝑖𝑥, and
⟨𝑁𝐺⟩ does not appear to reach a constant saturation value. Thus the

52



R. Klanner Nuclear Inst. and Methods in Physics Research, A 926 (2019) 36–56

Fig. 25. Dynamic range results using amplitude measurements from Ref. [45]. Shown is ⟨𝑁𝐺∕𝑁𝑝𝑖𝑥⟩ (in the figure 𝑁𝑓𝑖𝑟𝑒𝑑∕𝑁𝑡𝑜𝑡𝑎𝑙) versus 𝑁𝛾, 𝑟𝑒𝑙∕𝑁𝑝𝑖𝑥, the ratio of the expected number of
Geiger discharges for a hypothetical linear SiPM without saturation to 𝑁𝑝𝑖𝑥 (in the figure 𝑁𝑠𝑒𝑒𝑑∕𝑁𝑡𝑜𝑡𝑎𝑙) for (a) ⟨𝑁𝐺⟩∕𝑁𝑝𝑖𝑥 < 250, and (b) expanded view with ⟨𝑁𝐺⟩∕𝑁𝑝𝑖𝑥 < 4. In all cases a
significant excess of the number of measured Geiger discharges above 𝑁𝑝𝑖𝑥 (lines for 𝑁𝐺∕𝑁𝑝𝑖𝑥 = 1) is observed.

expectation given in Eq. (6) is not observed. Various explanations of
this phenomenon are discussed in the paper, but the conclusion is: Up
to now, no convincing explanation for this over saturation and enhanced
dynamic range could be found.

Note, that it is expected that the pulse amplitude, which was used
in the described measurements, depends on the number of Geiger
discharges in a pixel. The reason is that 𝑛 micro-plasma tubes in a
pixel correspond to 𝑛 resistors 𝑅𝑑 in parallel in the electrical model
shown in Fig. 1b, which results in a decrease of the time constant of
the Geiger discharge and thus in a higher amplitude of the fast pulse.
This effect has been reported in Ref. [46]. Whereas the charge was found
to be independent of 𝑛, the current amplitude increased with 𝑛. It also
should be noted, that the fast component of the pulse has a rise time of
typically several tens of ps and a full width below 1 ns. Therefore the
measured pulse amplitude is very much influenced by the bandwidth of
the readout.

A study with a picosecond laser, however using charge — instead of
amplitude-measurements, for four SiPMs from Hamamatsu (𝑁𝑝𝑖𝑥∕𝑝𝑖𝑡𝑐ℎ
[μm] = 2668/25, 1600/25, 400/50 and 100/100) has been presented
by G. Weitzel [47] and S. Krause [48]. The results are shown in Fig. 26.
𝑁𝑡𝑜𝑡𝑎𝑙(≡ 𝑁𝑝𝑖𝑥) is the number of pixels, 𝑁𝑠𝑒𝑒𝑑 the number of Geiger
discharges expected in the absence of saturation, and 𝑁𝑓𝑖𝑟𝑒𝑑 (≡ ⟨𝑁𝐺⟩)
the measured mean number of Geiger discharges. 𝑁𝑠𝑒𝑒𝑑 is obtained by
scaling 𝑁𝛾 so that 𝑁𝑠𝑒𝑒𝑑 = 𝑁𝑓𝑖𝑟𝑒𝑑 for low 𝑁𝛾 , where the SiPM response
is known to be linear. The data were fitted by 𝜇𝑐 ⋅

(

1 − 𝑒−𝑁𝑠𝑒𝑒𝑑∕(𝜇𝑐 ⋅𝑁𝑡𝑜𝑡𝑎𝑙 )
)

,
where 𝜇𝑐 = 𝑁𝐺, 𝑠𝑎𝑡∕𝑁𝑝𝑖𝑥, and 𝑁𝐺, 𝑠𝑎𝑡 the saturation value of 𝑁𝐺 for high
light intensities. For the SiPMs with 50 μm and 100 μm pitch, the values
found for 𝜇𝑐 are significantly larger than 1 and similar to the findings
of Ref. [45]. The SiPMs with 25 μm pitch shows 𝜇𝑐 values compatible
with or closer to 1. An explanation for the difference could be the
merging of micro-plasma channels from Geiger discharges in the same
pixel for small pixels. Clearly, more studies are needed to understand
these results.

In Ref. [14] the dynamic range for light pulses of different durations
is studied. As light source a LED is used, driven by a computer controlled
pulse generator to generate light pulses of up to 𝜏𝑙𝑖𝑔ℎ𝑡 = 100 ns duration
and photon numbers hitting the SiPM, 𝑁𝛾 , of up to > 105. The SiPMs
investigated were fabricated by KETEK with 𝑁𝑝𝑖𝑥 = 3600 and 𝑝𝑖𝑡𝑐ℎ =
50 μm, and by Hamamatsu with 𝑁𝑝𝑖𝑥 = 900 and 𝑝𝑖𝑡𝑐ℎ = 100 μm. Fig. 27
shows the dependence of ⟨𝑁𝐺⟩ after correction for dark pulses (called
𝑛𝑒𝑓𝑓 ) on 𝑁𝛾 . The value of 𝑁𝑝𝑖𝑥 is shown as a dashed line. For the KETEK
SiPM the charge was recorded with a 400 ns gate and for the Hamamatsu

SiPM with a 150 ns gate. The authors conclude that in the linear range
(which extends to 𝑛𝑒𝑓𝑓 ≈ 0.2 ⋅ 𝑁𝑝𝑖𝑥), the response is independent of
𝜏 𝑙𝑖𝑔ℎ𝑡. For higher 𝑁𝛾 values the response increases with 𝜏𝑙𝑖𝑔ℎ𝑡, as does
the saturation value. The ratio of the saturation value to 𝑁𝑝𝑖𝑥 for the
SiPM with 100 μm pixels is larger than for the one with 50 μm, which
agrees with the observations of Refs. [47,48].

To summarise: The dynamic range of SiPMs is determined by four
factors: The number of pixels, 𝑁𝑝𝑖𝑥, the pixel recharging time, 𝜏𝑟, the
correlated noise, and the pixel occupancy due to dark counts. As long
as the number of photons generating simultaneously primary Geiger
discharges and the pixel occupancy by dark counts 𝐷𝐶𝑅 ⋅ 𝜏𝑟∕𝑁𝑝𝑖𝑥 ≲ 0.2,
the response is close to linear and independent of the arrival time of
the photons. If this is not the case and the probability of two or more
Geiger discharges in a pixel during the time interval 𝜏𝑟 is significant,
the response becomes non-linear and dependent on the arrival-time
distribution of the photons and the readout electronics. In this case
a quantitative understanding of the response and its parametrisation
based on a physical model is complicated,. So far, in the author’s
opinion, the situation is not fully understood, however as discussed in
Ref. [14], for a given situation, the response function can be measured,
and phenomenological parameterisations found and used to correct for
the non-linearity. The observation of an increase in the mean number
of Geiger discharges, ⟨𝑁𝐺⟩, as a function of 𝑁𝛾 beyond 𝑁𝑝𝑖𝑥 and the
observation that the pulse shape changes with the number of Geiger
discharges in a single pixel, may point a way towards extending the
measurement capabilities of SiPMs into the domain of high 𝑁𝛾 , where
its response is highly non-linear. So far a detailed general study of
the non-linearity and the worsening of the resolution caused by high
pixel occupancies from dark counts caused by radiation damage, is
also lacking. This is of particular relevance for the upgrade of the
experiments at the Large Hadron Collider, LHC at CERN, where SiPMs
will be exposed to high fluences of hadrons.

5. Conclusions and outlook

SiPMs have already found a broad range of applications, which
is illustrated in the different contributions to this Special Issue of
Nuclear Instruments and Methods devoted to SiPMs. Given the many
new ideas for future applications, it is certain that the use of SiPMs
will continue to expand. Well documented methods of characterisation,
from which concise specifications can be derived, will become more
and more important. The paper is an attempt to give an overview and
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Fig. 26. Dynamic-range measurements from Refs. [47,48]. The same quantities as in Fig. 25 are shown, however the charge instead of the amplitude was measured for the four different
Hamamatsu SiPMs. The inset gives bias voltage (𝑈𝑏𝑖𝑎𝑠), over-voltage (𝑈𝑜𝑣𝑒𝑟), and 𝜇𝑐 , the ratio of the saturation value of ⟨𝑁𝐺⟩∕𝑁𝑝𝑖𝑥 from the fit.

Fig. 27. Effective number of Geiger discharges as a function of 𝑁𝛾 for (a) the Hamamatsu SIPM measured with a 150 ns gate, (b) the KETEK SIPM measured with a 400 ns gate from
Ref. [14]. The inset gives the values of 𝑉𝑂𝑉 , and the duration of the light pulse.

clearly define the parameters required to describe the performance of
SiPMs, discuss different characterisation methods, point out some of
their limitations and give a number of recommendations.

The main aims of the efforts on SiPM characterisation are:

1. Provide a basis for specifications by the vendors, which allow
users to choose the SiPM best suited for the intended application.

2. Enable quality control and sample selection.
3. Provide a basis for the development of the calibration and

analysis methods for a given application.
4. Improve the basic understanding of SiPMs, which is the input for

further improving their performance.

The characterisation methods which can be successfully used depend
on the application regime, which are grouped in four classes:

1. Low light level, temperature range −30 ◦C to +30 ◦C, no radiation
damage, no ambient light : In these conditions pulses from 0,

1, 2, etc. Geiger discharges can be separated. From spectra
recorded in the dark and with pulsed light, recorded either by
a QDC, by integrating the current transient or by measuring the
pulse amplitude after pulse-shaping, 𝐷𝐶𝑅 (dark count rate ), 𝐺∗

(gain), 𝑉𝑜𝑓𝑓 (turn-off voltage), relative 𝑃𝐷𝐸 (photon-detection
efficiency), 𝐸𝐶𝐹 (excess charge factor) and 𝐸𝑁𝐹 (excess noise
factor) can be determined. Various methods are described in the
paper. The measurements should be done as a function of 𝑉𝑏𝑖𝑎𝑠
(bias voltage) and for a few temperatures. The wavelength of the
pulsed light source should be close to the wavelength relevant for
the application. If necessary, the absolute 𝑃𝐷𝐸 should be mea-
sured, which however is quite involved. In our view no detailed
analysis of correlated pulses is required for most applications. The
knowledge of 𝐸𝐶𝐹 is sufficient to obtain the absolute number of
photons producing primary Geiger discharges, and the optimum
operating point with respect to photon resolution can be obtained
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from 𝐷𝐶𝑅, 𝐸𝐶𝐹 and 𝐸𝑁𝐹 . If the intention is to operate the
SiPM at high over-voltages, the dark current, 𝐼𝑑𝑎𝑟𝑘, as a function
of 𝑉𝑏𝑖𝑎𝑠 should be investigated. It is not recommended to use the
SiPM at 𝑉𝑏𝑖𝑎𝑠 values at which the slope of ln(𝐼𝑑𝑎𝑟𝑘) shows a second
increase.

2. Like 1., however for cryogenic temperatures: Given the large interest
to use SiPMs at cryogenic temperatures in Dark Matter, neutrino-
less double beta decay and neutrino oscillation experiments (Ref.
[49]) significant efforts are devoted to developing and charac-
terising SiPMs, which work at temperatures down to 100 K and
even lower. At these low temperatures many properties of doped
silicon change significantly compared to room temperature. This
has a major impact on their performance, as discussed in Ref.
[50]. The methods used so far are similar to those at higher
temperatures. An example is Ref. [43,51].

3. Similar to 1., however for high light intensities: In addition to the
calibration suggested in 1., spectra should be recorded at high
photon numbers, 𝑁𝛾 , and both mean values, ⟨𝑄⟩, and rms-spread,
𝜎𝑄, determined. The relative number of photons is obtained from
a linear photon-detector, e.g. a photo-diode looking at the light
source. The normalisation is obtained at low light intensities,
where the SiPM is expected to be linear, from 𝑁𝑛𝑜𝑟𝑚

𝛾 = ⟨𝑁𝑝𝐺⟩

using ⟨𝑁𝑝𝐺⟩ from Eq. (3). In this way the calibration curve,
𝑄(𝑁𝑛𝑜𝑟𝑚

𝛾 ), is obtained, which can be used to correct the measured
𝑄 for the non-linearity. As the non-linearity depends on the
arrival time of the photons, it is important that the pulse shape
of the calibration pulse is similar to the pulse shape of the
intended application. To a lesser extent, the non-linearity also
depends on the wavelength. Therefore the wavelength used for
the calibration should be similar to the one of the intended
application.

4. High dark count rate due to radiation damage or ambient light : If
possible, the characterisation described in 1. should be performed
in a situation, where the 𝐷𝐶𝑅 is low, e.g. before irradiation. In
addition, the dark current, 𝐼𝑑𝑎𝑟𝑘, and the current with DC-light,
𝐼𝑙𝑖𝑔ℎ𝑡, should be measured as a function of 𝑉𝑏𝑖𝑎𝑠. The comparison
of 𝐼𝑝ℎ𝑜𝑡𝑜 = 𝐼𝑙𝑖𝑔ℎ𝑡−𝐼𝑑𝑎𝑟𝑘 for the low and high 𝐷𝐶𝑅 situation already
gives a good idea on the possible reduction of 𝑃𝐷𝐸 due to high
pixel occupancy by dark counts. Methods of how to determine
𝐷𝐶𝑅 from 𝐼𝑑𝑎𝑟𝑘, and how from 𝜎𝑑𝑎𝑟𝑘 (spread of the recorded
spectrum without illumination) are presented in the paper. The
method using 𝐼𝑑𝑎𝑟𝑘 appears to be the more reliable one. In
addition, a method of how to determine the relative 𝑃𝐷𝐸 and
𝐺∗ from the mean, ⟨𝑄⟩, and rms-spread, 𝜎𝑄 of the spectrum with
illumination in the absence of saturation effects, is presented. An
extension of this method including saturation effects, which is
relevant at high 𝐷𝐶𝑅 values or high light intensity, still has to
be developed.

In spite of large and highly successful efforts to characterise SiPMs,
a lot of work remains to be done: Examples are the characterisation
at cryogenic temperatures, the determination of the non-linearities at
high photon intensities and the improvement of the measurement and
analysis methods of highly radiation-damaged SiPMs.
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Appendix

In this appendix Eq. (23), the relation between the variance, 𝜎2𝑑𝑎𝑟𝑘,
and the primary dark count rate, 𝐷𝐶𝑅𝑝, for current pulses 𝐼(𝑡) =
(𝑞0 ⋅𝐺∕𝜏) ⋅ 𝑒−𝑡∕𝜏 occurring randomly at the rate 𝐷𝐶𝑅𝑝 and integrated in
the time interval 𝑡𝑔𝑎𝑡𝑒, including the effects of correlated noise is derived.
First, a single (1) SiPM pulse occurring at 𝑡 = 0 is considered, with the
current transient

𝐼1(𝑡) =

{

0 for 𝑡 < 0,
𝑓 (𝑡) = 1

𝜏 ⋅ 𝑒−𝑡∕𝜏 for 𝑡 ≥ 0. (26)

The integral 𝑄1 of the current for a gate starting at 𝑡 = 𝑡1 with width
𝑡𝑔𝑎𝑡𝑒 is

𝑄1(𝑡1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 for 𝑡1 < −𝑡𝑔𝑎𝑡𝑒,

∫

𝑡𝑔𝑎𝑡𝑒+𝑡1

0
𝑓 (𝑡) d𝑡 = 1 − 𝑒−(𝑡𝑔𝑎𝑡𝑒+𝑡1)∕𝜏 for − 𝑡𝑔𝑎𝑡𝑒 ≤ 𝑡1 < 0,

∫

𝑡𝑔𝑎𝑡𝑒+𝑡1

𝑡1
𝑓 (𝑡) d𝑡 = 𝑒−𝑡1∕𝜏 ⋅ (1 − 𝑒−𝑡𝑔𝑎𝑡𝑒∕𝜏 ) for 𝑡1 ≥ 0.

(27)

Next, the mean charge ⟨𝑄1(𝛥𝑡1)⟩ and the variance 𝜎21 (𝛥𝑡1) =
⟨(

𝑄(𝑡1) −

⟨𝑄1(𝛥𝑡1)⟩
)2⟩

for the 𝑡1 interval from −𝑡𝑔𝑎𝑡𝑒 to 𝑡0, denoted 𝛥𝑡1 = 𝑡𝑔𝑎𝑡𝑒 + 𝑡0,
are calculated. The value of 𝑡0 is not relevant, as only the limes 𝛥𝑡1 → ∞
is relevant. One finds

⟨𝑄1(𝛥𝑡1)⟩ = lim
𝛥𝑡1→∞

∫𝛥𝑡1 𝑄(𝑡1) d𝑡1
𝛥𝑡1

= lim
𝛥𝑡1→∞

𝑡𝑔𝑎𝑡𝑒 + 𝜏 𝑒−𝑡0∕𝜏 (𝑒−𝑡𝑔𝑎𝑡𝑒∕𝜏 − 1)
𝛥𝑡1

=
𝑡𝑔𝑎𝑡𝑒
𝛥𝑡1

(28)

For the variance a similar calculation gives

𝜎21 (𝛥𝑡1) = lim
𝛥𝑡1→∞

∫𝛥𝑡1
(

𝑄(𝑡1) − ⟨𝑄1(𝛥𝑡1)⟩
)2 d𝑡1

𝛥𝑡1

=
𝑡𝑔𝑎𝑡𝑒 − 𝜏 (1 − 𝑒−𝑡𝑔𝑎𝑡𝑒∕𝜏 )

𝛥𝑡1
. (29)

For the dark count rate𝐷𝐶𝑅𝑝, there will be on average𝑁𝐷𝐶 = 𝐷𝐶𝑅𝑝⋅𝛥𝑡1
dark counts in the time interval 𝛥𝑡1, and the pulse height distribution
will be the convolution of 𝑁𝐷𝐶 single pulses with the mean

𝑁𝐷𝐶 ⋅ ⟨𝑄1⟩ = 𝐷𝐶𝑅𝑝 ⋅ 𝑡𝑔𝑎𝑡𝑒, (30)

and the variance

𝑁𝐷𝐶 ⋅ 𝜎21 = 𝐷𝐶𝑅𝑝 ⋅
(

𝑡𝑔𝑎𝑡𝑒 − 𝜏 ⋅ (1 − 𝑒−𝑡𝑔𝑎𝑡𝑒∕𝜏 )
)

. (31)

For finite 𝛥𝑡1 values one has to take into account that 𝑁𝐷𝐶 is distributed
according to a Poisson distribution, however in the limit 𝛥𝑡1 → ∞ the
Poisson distribution approaches a 𝛿-function at 𝑁𝐷𝐶 and its contribution
to the variance vanishes.

Eq. (31) describes the variance for 𝑞0 ⋅ 𝐺 = 1 in the absence of
correlated noise from cross-talk and after-pulses. The effect of 𝐸𝐶𝐹 and
𝐸𝑁𝐹 is taken into account by replacing ⟨𝑁𝑝𝑒⟩ in Eq. (18) by 𝑁𝐷𝐶 ⋅ 𝜎21
from Eq. (31), from which Eq. (23)

𝜎2𝑑𝑎𝑟𝑘 =
(

(𝑞0 ⋅𝐺)2 ⋅ 𝐸𝑁𝐹 ⋅ 𝐸𝐶𝐹 2 ⋅𝐷𝐶𝑅𝑝
)

⋅
(

𝑡𝑔𝑎𝑡𝑒 − 𝜏 ⋅ (1 − 𝑒−𝑡𝑔𝑎𝑡𝑒∕𝜏 )
)

(32)

is obtained. For 𝑡𝑔𝑎𝑡𝑒 ≫ 𝜏 the term in the right parenthesis is ≈ 𝑡𝑔𝑎𝑡𝑒 − 𝜏,
and for 𝑡𝑔𝑎𝑡𝑒 ≪ 𝜏 it is ≈ 𝑡2𝑔𝑎𝑡𝑒∕2𝜏.
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