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These are notes meant to fill in the blanks and flesh out the partial explanations given
in CAEN Application Note AN2502, SiPM Characterization.

The CAEN system this note describes is a very high-tech item with complex internal
functions and a lot of engineering behind it. In half an hour or so, a technician could be
taught to “just use it” to make repetitive measurements (for example, for quality control in
an SiPM foundry). However, as physicists we need to understand at least the signal pro-
cessing and overall performance characteristics of the system in some depth, without delving
into the actual electronic design of the components. This is a bit of a tall order, due to the
aforementioned complexity of the CAEN system. There’s a lot of stuff to understand. A
big part of gaining such “understanding” is to learn some of the jargon used by electronic
engineers to describe these systems. I hope the following notes will accomplish this.

1. SiPM Fill Factor and PDE
The two Hamamatsu devices both cover silicon wafers 1 x 1 mm in size. The 25c divides

the square mm into an array of 40 x 40 = 1600 sensitive ”cells” (individual light detectors
called “avalanche photodiodes”) while the 100C has only 10 x 10 = 100 cells. To allow each
cell to be electrically and functionally independent, there must be a certain border area or
space between cells which is insensitive to light. The term “fill factor” refers to the fraction
of the 1 x 1 mm area which is actually covered by sensitive photodiode rather than border
space. The manufacturing process and physical characteristics of silicon require that the
border areas be about a micron or two wide. So the active cells of the 25C are about 23
or 24 microns wide, separated from their neighbors by a micron or two of dead (insensitive)
space. Taking 23 microns for an example, this gives a “fill factor” of about 23x23/25x25 =
84% for the 25C vs. 98x98/100x100 = 94% for the 100C. (Karla- see if Hamamatsu tells you
the actual numbers to put in here.) So the 25C has less sensitive area and hence a lower
PDE.

2. SiPM Dynamic Range
Understanding the dynamic range difference is a bit more subtle. Each cell of the SiPM

is an avalanche photodiode. These devices just give a saturated signal of fixed height when
they absorb any number of photons. You can’t tell if a cell was hit by one photon or ten
photons, it just gives the same pulse if it was hit at all. The way the SiPM is able to “count
photons” is actually by counting hit cells.

Now, the term “dynamic range” refers to the range of input signals for which a system
gives an output linearly proportional to the input. If the input exceeds the dynamic range,
the output no longer tracks the input. The output is said to be “saturated”. In this case,
the input signal dynamic range is the range of numbers of photons arriving in a flash of light
over which a linear increase in the output signal occurs as the number of photons in the flash
increases.

For the 25C, we will start missing output pulse height due to multiple photons hitting
a single cell when the input signal contains some substantial fraction of 1600 photons/mm2
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(one per cell). The 100C starts missing output signal due to multiple hits per cell already
for signals of some fraction of 100 photons/mm2. So the 25C has a higher dynamic range.

3. System Gains
There are at least three different “gains” in this system.
The physics of the avalanche process in each avalanche photodiode cell produces a macro-

scopic pulse of electrical charge from a single photoelectron. The ratio between the output
pulse charge and the charge of one electron I will call GSiPM . This gain is of the order of
106 according to the Hamamatsu data sheets.

The PSAU takes this charge pulse and uses transistors to amplify it further. This gain I
will call GPSAU and it is the subject of Fig. 2. Just to confuse you, GPSAU is measured not
as a charge ratio (a pure number) but in “dB”, which is just 20 times the log10 the charge
amplification ratio. So a gain of 40 dB means a charge amplification factor of 100.

Finally there is the “ADC channel conversion factor” discussed on page 3 with Equation
[1]. This will be discussed below.

Like the SiPM, any amplifier also has a finite dynamic range. Often the dynamic range
of an amplifier can be understood based on the maximum output signal size the thing can
put out. For example, an op-amp amplifier cannot put out signals larger than the power
supply voltage. So the dynamic range is limited to the range of input signals that produce
output signals smaller than this.

To measure any gain, we must have a way to apply input signals of known size, and
measure the resulting output. If we don’t need the absolute value of the gain, but only
want to know the dynamic range of the amplifier at its output, we can use input signals of
unknown but constant size and measure while increasing the gain until saturation sets in.
Or we can look at the output signals at constant gain, while increasing the input level by
known factors.

From Fig. 2, the onset of saturation in the PSAU is softer, causing the curves to acquire a
negative second derivative (departure from linearity in the form of a downward concavity)as
the gain and the output signal size become larger. To my eyeball, the 40 dB curve is the
lowest gain to show appreciable saturation, turning downward around .04 pC output charge.
The behavior at higher gains is a bit strange, with nonlinearity appearing already at .03
pC for 44 dB and becoming more severe above .08 pC. This behavior is mainly due to the
complicated effect that output signal height saturation has on the integrated charge in a
pulse.

4. The digitizer and Firmware integration
To really specify what the device does, the name used by CAEN for their “Digitizer’

should really be ‘Waveform Digitizer”. A waveform digitizer is a fairly complex device that
produces a digital record (a list of numbers) representing the shape and size of an input
waveform vs. time. To do this requires the following internal operations:

• Accept an analog signal (continuously variable voltage vs. time signal) from the SP5600
and send this signal to ground through a resistance Rin.

• Generate an internal “clock” signal (a train of pulses repeating at a precise time sep-
aration, in this case 4 ns, for 250 million samples per second [MSPS]) to use as the
time base for the waveform digitization. The rate of this signal is called the “sampling
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rate” of the waveform digitizer, often [incorrectly] specified in Hz. The DT5720A has
a sampling rate of 250 MSPS (Mega Samples Per Second) or 250 MHz. The time
between clock pulses is often referred to as the “time bin”.

• At each “tick” of the clock, sample the input waveform voltage and convert its am-
plitude into a binary number (“digitize it”) with a fixed number of binary bits. The
number of bits is called the “depth” or often [incorrectly] the “digitizer resolution”.
The 12-bit depth of the CAEN system is the most common today. Very fast (clock
rates >1 GSPS) or very cheap digitizers may be limited to 8 bits, and some high
precision devices have 14 or 16 bits.

• Record the resulting binary number in time order by transferring it into a digital
memory.

• Be ready for the next clock tick to repeat the sampling and digitization, storing the
next digital value in the next memory location.

Present-day digital oscilloscopes are waveform digitizers with a display.
5. ADC Channel Conversion Factor (“conversion gain”)
First thing to note: there is a big fat problem with Equation [1] as written. The LHS

says ADC Channel/Coulomb, but the RHS contains a factor (V/R)∆t, which has units of
Coulombs. The “Coulombs” appears in the denominator on the LHS but in the numerator
on the RHS, which cannot be right.

In the text after this equation, conversion gains are quoted in units fC/ADC (fC =
femtoCoulomb = 10−15 Coulomb ∼ 6,500 electrons). Of course this is really the inverse
of the gain, since it expresses input/output rather than output/input. But this inverse
nomenclature is unfortunately customary for digitizers. Equation [1] RHS does give “gains”
with these units.

Bottom line: LHS of Equation [1] should be written as Coulomb/ADC channel, not ADC
channel/Coulomb.

Now, what is this “conversion gain”? The “gain” associated with a digitizer is not a pure
number (a ratio) like it is for a voltage amplifier. This gain tells the relationship between
the output digitized number and something characterizing the input signal size. The output
digitized number is often referred to as the “ADC channel” because these numbers are
sometimes displayed as a probability distribution histogram in which these numbers are the
x- (or “channel”)-axis value.

Most engineers and most data sheets would characterize the input signal as a voltage.
That’s what the ADC actually measures and converts. So the gain would have units of
output/input = (ADC channels)/Volt. But for reasons best known to them, the CAEN
engineers instead characterize the input signal in terms of charge. The charge represented
by one single output of the ADC is just the input current times the digitization period (the
“time bin”, = 4 ns here). Obviously current * time = charge, so it does make sense to
represent the input signal in this way.

The input current is I = V/RIN where V is the voltage amplitude of the signal developed
at the ADC input when the avalanche current I from the SiPM is sent to ground1 through

1It should be noted that if there were any other resistors R’ to ground between the SiPM cathode and
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the input impedance of the digitizer RIN = 50Ω (you should know what input impedance
is from Ph. 4301).

Not only that, but as noted above the CAEN engineers actually quote the inverse of the
conversion gain. Therefore the CAEN engineers’ quote digitizer gain in units Coulomb/ADC
channel rather than ADC channel/Volt.

The physical quantity of interest in a pulse from an SiPM is the total charge in the pulse,
not the charge in a single time bin. The digitizer includes software to compute the total
charge in an input pulse by just adding together the charges represented by all the time bins
within the pulse.

Now we can rearrange Equation [1] and understand it as a product of three factors:

1. The range of charges the digitizer can see within its input dynamic range. This is
Imax*∆t = Vpp/RIN*∆t. Vpp comes in because the digitizer is set up to accept signals
of ± 1 V for an input dynamic range Vpp = 2 V.

2. (One over) the total number of ADC channels that can be output by a digitizer with
depth Nbits (= 12 in this case). This is just the number of distinct digital number
outputs, which are numbers ranging from Nbits of zeroes to Nbits of 1’s. Some thought
reveals that this number is 2Nbits.

3. A factor of 1/GPSAU . This is needed to make the conversion gain refer to charge
from the SiPM itself. If the PSAU amplifies the SiPM current by a factor before
the digitizer sees it, we need to divide out this factor to get a gain that refers to the
actual SiPM charge rather than the amplified charge. To partly compensate for the
different SIPM avalanche gains of the 25C vs. 100C SiPM devices, the CAEN engineers
choose to quote the digitizer gain using different user-selected GPSAU values for the
two different SiPM detectors. The instructor does not approve of this either but you
need to understand it to understand this equation.

The product of these factors (charge range)/(GPSAU * ADC channels) gives the CAEN
engineers’ version of the conversion gain in fC/ADC channel.

Note that Equation [1] assumes that the digitizer responds completely linearly throughout
its entire dynamic range. This assumption could be checked with a precision pulser.

6. SiPM avalanche Gains GSiPM

In the next paragraph, without any introduction, the application note launches into a
discussion of the SiPM avalanche gains and how to measure them. This discussion glosses
over several important points. We calculated above the digitizer gain for a single time
bin. However, Figures 6 and 7 don’t show data for single time bins, but rather the inte-
grated charge (sum of individual time bin charges) within the user-determined pulse widths
(“gates”) of 160(88)ns respectively. The data are shown as frequency histograms of these

the digitizer input, the actual SiPM charge vs. time would have to be scaled to account for the current
division between these other resistors and the digitizer input resistance. This might be the case for example
in a high energy physics experiment involving long cables between the SiPM and the digitizer(s), in which
case a resistor R’ to ground near the SiPM itself is needed to avoid stretching out the signal in time by
integrating it onto the cable capacitance. The signal is then said to be “double terminated” and the digitizer
input impedance only sees a fraction R/(R + R’) of the SiPM current and charge.
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integrated charges. Because the system is assumed to be (and actually is reasonably) linear
throughout, the conversion gain for these integrated charges is the same as for an individual
time bin.

How to measure GSiPM? Well, several facts about the system allow us to do this quite
easily. First, it can be shown that the series of weird spikes in Figures 6 and 7 corresponds to
simultaneous avalanches in N = 1, 2, 3, ... cells of the SiPM array, in other words detection
of N = 1, 2, 3 photons, each producing a single-photoelectron avalanche. Since the avalanche
gains of all the cells are very close to identical, the charge produced from N simultaneous
photoelectrons is just Ne * GSiPM . So the spacing between adjacent spikes corresponds to
a charge difference e * GSiPM Coulombs. But we know the conversion gain of the digitizer.
So if we count the number of ADC channels separating adjacent spikes, we can convert it
into the corresponding observed charge difference. This difference is e * GSiPM Coulombs
and we know e = 1.6×10−19 Coulombs, so we have just measured GSiPM .

Apparently the SiPM has no problem distinguishing simultaneous absorption of say 7 vs.
8 photons. But the light pulser setting used to produce these histograms was fixed, i.e. all
the light flashes were supposedly identical in amplitude. Why then are the distributions of
pulse charges histogrammed in Figures 6 and 7 so broad, apparently showing peaks ranging
from one to more than 15 photoelectrons? The answer is that the light flashes in this case are
more or less identical in amplitude, but the detections of individual photons are statistically
independent probabilistic events. The number of detections occurring in a given flash is
therefore governed by (Poisson) counting statistics, as we discussed in the first lab exercise
in this course. It is an interesting exercise to show that the frequencies for N = 1, 2, 3...
photoelectrons obtainable from Figures 6 and 7 (or using the “PSAU Staircase” tab as in
Figure 13) are actually well fitted by a Poisson distribution.

7. SiPM Dark Count Rate (DCR)
Every sensitive light detector has a dark count rate- it gives output pulses even when ab-

solutely no light falls on it. Usually, this is mostly due to thermal emission of photoelectrons
from the sensitive region of the detector.

It should be noted that the DCR of the SiPMs shown in Figures 16 and 17 are of the
order of 105-106 counts per second per mm2 of sensitive area. This is very high and is the
main limitation in the use of SiPMs for low level light detection. A good photomultiplier
tube operated at room temperature can have a DCR of less than one count per second per
mm2. It’s pretty hopeless to do single photon counting with room temperature SiPMs at the
present level of development. However, the DCR is getting lower with every new generation
of SiPM devices.

Since it is mostly due to thermal emission, the DCR of SiPMs can be reduced tremen-
dously by cooling them, particularly to temperatures below -175◦ C. This adds significant
complexity, but it has been shown to allow SiPM DCR’s of less than or equal to that of good
PMTs operated at room temperature.
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