Development and Construction of a Muon Telescope

Ferienakademie 2024 Group 3 - Dark Matter and the Cosmos

Index

- Introduction to cosmic rays and muons

Experimental setups and measurements

Results and discussion

Uncertainties and efficiency

Introduction to cosmic rays and muons

Primary cosmic rays

Particles with (extra)galactic or solar origin e.g.:
Fusion processes in sun
Supernovas

-

Primarily protons and α -particles

Energy distribution

Secondary cosmic rays

- Reactions of primary cosmic rays in upper atmosphere:
 - Production of baryonic matter:
 - Protons, Neutrons, Pions, Kaons

Decay of Pions and Kaons (very short lived):

$$egin{array}{l} \pi^+ o \mu^+ +
u_\mu \ \pi^- o \mu^- + \overline{
u}_\mu \end{array}$$

→ Production of muons in upper atmosphere (~10km)

Secondary cosmic rays

Muons in standard model

Standard Model of Elementary Particles

Muons in standard model

"Heavy electron":
 Charge: q = 1.6022x10⁻¹⁹ C = e
 Mass: m = 106 MeV ~ 200* m_e
 Spin: s = 1/2

Unstable and short lived:

- Life time: $\tau = 2.2 \ \mu s$
- Lets assume: v ~ c:
- Mean path: $L = v^* \tau \sim 0.6$ km ??

Muons in standard model

"Heavy electron":
Charge: q = 1.6022x10⁻¹⁹ C = e
Mass: m = 106 MeV ~ 200* m_e.
Spin: s = 1/2

Unstable and short lived:

- Life time: $\tau = 2.2 \ \mu s$
- Lets assume v~cv/
- Mean path: $L = v^* \tau \sim 0.6$ km

Muon Flux

- Muon Flux at sea level: 1 cm²/s
 Minimum lonizing Particle:
 - \rightarrow Coincidence rate (Later)

Muongraphy

Muongraphy

Experimental setup

Detection system

15×15×1 cm³, plastic scintillator

-

Coincidence module

Coincident

μ

Not coincident

2

Measurements

Date	Location	Setup, measurements
25th September	Feldrand	Separated, different angles
26th September	Mine	Stacked, @ different depths
27th September	Bozen, Waltherplatz	Stacked
28th September	Feldrand	Separated, different angles
28th September	Mairwald - Staubecken	Stacked, @ different depths
29th September	Reinswald-Kassianspitze- Latzfonser Kreutz	Stacked, @ different depths
29th-30th Sept.	Feldrand	Stacked, long run
30th-31st Sept.	Feldrand	Efficiency and random coincidence

Count rate VS altitude

Count rate VS altitude

Count rate VS altitude

Winkelabhängigkeit

Depth Measurements

Depth Measurements

Bogdanova, Gavrilov, Kornoukhov, Starostin

Bethe-Bloch Curve

Long run measurement

Avg = 1693.5 Var = 1668.3

Uncertainties and efficiency

Efficiency

Random coincidences

