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Abstract—Silicon Photo-Multipliers (SiPM) are state of the art
light detectors with unprecedented single photon sensitivity and
photon number resolving capability, representing a breakthrough
in several fundamental and applied Science domains. An educa-
tional experiment based on a SiPM set-up is proposed in this
article, guiding the student towards a comprehensive knowledge
of this sensor technology while experiencing the quantum nature
of light and exploring the statistical properties of the light pulses
emitted by a LED.
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I. INTRODUCTION

XPLORING the quantum nature of phenomena is one

of the most exciting experiences a physics student can
live. What is being proposed here has to do with light bullets,
bunches of photons emitted in a few nanoseconds by an
ultra-fast LED and sensed by a state-of-the-art detector, a
Silicon Photo-Multiplier (hereafter, SiPM). SiPM can count
the number of impacting photons, shot by shot, opening up
the possibility to apply basic skills in probability and statistics
while playing with light quanta. After an introduction to
the SiPM sensor technology (Section II), the basics of the
statistical properties of the random process of light emission
and the sensor related effects are introduced (Section III).
The experimental and data analysis techniques are described
in Section IV, while results and discussions are reported in
Section V.

II. COUNTING PHOTONS

SiPMs are cutting edge light detectors essentially consisting
of a matrix of photodiodes with a common output and densities
up to 10*/mm?2. Each diode is operated in a limited Geiger-
Muller regime in order to achieve gains at the level of
~ 10° and guarantee an extremely high homogeneity in the
cell-to-cell response. Subject to the high electric field in
the depletion zone, initial charge carriers generated by an
absorbed photon or by thermal effects trigger an exponential
charge multiplication by impact ionization, till when the
current spike across the quenching resistance induces a drop
in the operating voltage, stopping the process [1], [3], [4].
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SiPM can be seen as a collection of binary cells, providing
altogether an information about the intensity of the incoming
light by counting the number of fired cells.

Fig. 1 shows the typical response by a SiPM to a light
pulse: traces correspond to different numbers of fired cells,
proportional to the number of impinging photons. Because of
the high gain compared to the noise level, traces are well
separated, providing a photon number resolved detection of
the light field.
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Fig. 1: Response of a SiPM Hamamatsu MPPC S10362-11-100C illuminated
by a light pulse.

This is also shown in Fig. 2, displaying the spectrum
of the SiPM response to a high statistics of pulses: every
entry corresponds to the digitized released charge, measured
integrating the electrical current spike during a pre-defined
time interval. The peaks correspond to different number of
cells fired at the same time. Each peak is well separated
and occurs with a probability linked at first order to the
light intensity fluctuations. An analysis of the histogram is
revealing other significant characteristics:

o The peak at 0 corresponds to no detected photons and
its width measures the noise of the system, i.e. the
stochastic fluctuations in the output signal in absence
of any stimulus. In the displayed histogram, oy = 29+1
ADC channels.

e The peak at 1 detected photon has a width o1 = 38.1+0.4
ADC channels, by far exceeding op. The extra
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Fig. 2: Photoelectron spectrum probing a LED source measured with a Hama-
matsu MPPC S10362-11-100C at a bias voltage of 70.3V and temperature of
25°C.

contribution may be related to the fact that not all of
the cells were born equal. In SiPM the homogeneity of
the response is quite high [5], [6], however, since fired
cells are randomly distributed in the detector sensitive
area residual differences in the gain become evident
broadening the peak.

e As a consequence the peak width is increasing with
the number N of fired cells with a growth expected to
follow a v/N law, eventually limiting the maximum
number M of resolved peaks.
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Fig. 3: Measurement of the DCR of the SiPM performed at 25°C'.

The detector working conditions can be optimized to maxi-
mize M, properly tuning the bias voltage V};,s and balancing
competing effects. On one hand, the peak-to-peak distance is
linked to the single cell gain and it is expected to grow linearly
with the over-voltage as:

C AV

de

Gain =
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where AV = Viias — VBreakdown, C is the diode capacitance
of the single cell and ¢. the electron charge [3]. Effects
broadening the peaks may grow faster dumping the expected
resolution. Among these effects it is worth mentioning Dark
Counts, Optical Cross-Talk and After-Pulsing:

e Free charge carriers may also be thermally generated.
Results are spurious avalanches (Dark Counts) occurring

randomly and independently from the illumination field.
The Dark Count Rate (DCR) does depend from several
factors: substrate, processing technology, sensor design
and operating temperature [4]. The over-voltage has an
impact since the junction thickness volume grows with
it together with the triggering probability, namely the
probability that a charge carrier develops an avalanche
[4], [5]. The DCR can be measured in different ways.
A Stair Case Plot is presented in Fig. 3 where the
output from a sensor is compared to the threshold of
a discriminator and the rate with which the threshold
is exceeded is counted. A typical DCR is about
0.5 M Hz/mm?.

e Dark Counts may be considered as statistically inde-
pendent. However, optical photons developed during
an avalanche have been shown to trigger secondary
avalanches [4] involving more than one cell into spurious
pulses. This phenomenon is named Optical Cross-Talk
(OCT). The OCT is affected by the sensor technology
[4], [7], [8], [9] and strongly depends on the bias
voltage increasing the triggering probability and the
gain forming the optical photon burst. The OCT can be
measured by the ratio of the Dark Counts frequencies
for pulses exceeding the 0.5 and 1.5 levels of the single
cell amplitude, namely:

V1.5pe

OCT = 2

V0.5pe

The OCT typically ranges between 10% and 20% [5],
[9], [10].

e Charge carriers from an initial avalanche may be
trapped by impurities and released at later stage
resulting in delayed avalanches named After-Pulses. For
the detectors in use here, an After-Pulse rate at about
the 25% level has been reported for an overvoltage
AV = 1V, with a linear dependence on Vj;,s and a
two-component exponential decay time of 15 ns and
80 ns [5].

Dark Counts, Optical Cross-Talk and After-Pulses occur
stochastically and introduce fluctuations in the multiplication
process that contribute to broaden the peaks in the spectrum.
An exhaustive study of this effect, also known as Excess Noise
Factor (ENF), exceeds the goals of this work and will not
be addressed here (see for example [3], [6], [8] and [12]).
However, the resolving power that will be introduced in the
following may be considered a figure of merit accounting for
the ENF and measuring the ability to resolve the number of
detected photons.

III. PHOTON COUNTING STATISTICS

Spontaneous emission of light results from random decays
of excited atoms. Occurrences may be considered statistically
independent, with a decay probability within a time interval



At proportional to At itself. Being so, the statistics of the
number of photons emitted within a finite time interval T is
expected to be Poissonian, namely:
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where )\ is the mean number of emitted photons.

The detection of the incoming photons has a stochastic
nature as well, at the simplest possible order governed by the
Photon Detection Probability (PDE) 7, resulting in a Binomial
probability to detect d photons out of n:

Ban() = (3 )t — . @

As a consequence, the distribution P, of the number of
detected photons is linked to the distribution P, ,, of the
number of generated photons by

Pia =Y Ban(n)Pop - ®)
n=d

However, the photon statistics is preserved and P is
actually a Poissonian distribution of mean value © = A\n
[9], [10]. For the sake of completeness, the demonstration is
reported in Appendix A.

Detector effects (especially OCT and After-Pulses) can
actually modify the original photo-electron probability density
function, leading to significant deviations from a pure Poisson
distribution. Following [9] and [10], OCT can be accounted
for by a parameter € x7, corresponding to the probability of an
avalanche to trigger a secondary cell. The probability density
function of the number of fired cells, the random discrete
variable m, can be written at first order as:

floor(m/2)

> Bim-klexr)Pmoi(p),  (6)

k=0
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where floor rounds m/2 to the nearest lower integer and
By, m—k(€exr) is the binomial probability for m — k cells
fired by a photon to generate k extra hit by OCT. P ® B
is characterized by a mean value and variance expressed as:

mpep = w1+ exr) Ufa@B =u(l+exr). (D

In order to perform a more refined analysis, the probability
density function of the total number of detected pulses can
be calculated taking into account higher order effects [13].
The result is achieved by assuming that every primary event
may produce a single infinite chain of secondary pulses with
the same probability exr. Neglecting the probability for an
event to trigger more than one cell, the number of secondary
hits, described by the random discrete variable k, follows a
geometric distribution with parameter €x:

Grlext) = exr"(1 —exr)  for k=0,1,2,3.... (8)

The number of primary detected pulses is denoted by the
random discrete variable d and belongs to a Poisson distribu-
tion with mean value ;. As a consequence, the total number
of detected pulses m represents a compound Poisson process
given by:

d

m=> (1+k). )

i=1
Then, the probability density function of m is expressed as
a compound Poisson distribution:

e Bimp (1 — exp)lexy™ "
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where
1 ifi=0and m=20
Bim =140 ifi=0and m >0

m!(m—1)!

m otherwise

The mean value and the variance of the distribution are
respectively given by:

52 _ il +exr)
l—exr 7297 (1—exr)?’
These relations can be calculated referring to the definition

of the probability generating function and exploiting its fea-
tures [13]. The full demonstration is available in Appendix B.
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IV. EXPERIMENTAL TECHNIQUES

In this section the experimental set-up and the analysis
methods are presented. The optimization of the working point
of a SiPM is addressed together with the recorded spectrum
analysis technique.
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Fig. 4: Schematic layout of the experimental set-up.

A. Set-up and measurements

The experimental set-up is based on the CAEN Silicon
Photomultiplier Kit. The modular plug and play system
contains:

e The Two channel SP5600 CAEN Power Supply and
three-stage Amplification Unit (PSAU) [14], with SiPM
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embedding head unit. The PSAU integrates a leading
edge discriminator per channel and coincidence logic.

e The two channels DT5720A CAEN Desktop Digitizer,
sampling the signal at 250 MS/s over a 12 bit dynamic
range. The available firmware enables the possibility
to perform charge Integration (DPP-CI), pulse shape
discrimination (DPP-PSD) and advanced triggering [15].

e The ultra-fast LED (SP5601 [16]) driver emitting
pulses at 400 nm with FWHM of 14 nm. Pulses are
characterized by an exponential time distribution of the
emitted photons with a rising edge at sub-nanosecond
level and a trailing edge with 7 ~ 5 ns. The driver is
also providing a synchronization signal in NIM standard.

In the current experiments the SiPM that was used is a Multi
Pixel Photon Counter (MPCC) S10362-11-100C produced by
HAMAMATSU Photonics! (see Table I).

TABLE 1. Main characteristics of the SiPM sensor (Hamamatsu MPPC
S10362-11-100C) at a temperature of 25°C

Number of Cells: 100

Area: 1 x 1 mm?

Diode Dimension: 100 pm X 100 pm
Breakdown Voltage: 69.2V

DCR: 600 kHz at 70.3V
OCT: 20% at 70.3V

Gain: 3.3 x 10% at 70.3V

PDE (A = 440nm): 75% at 70.3V

The block diagram of the experimental set-up is presented
in Fig.4 with light pulses conveyed to the SiPM sensor by an
optical fiber.

The area of the digitized signal is retained as a figure
proportional to the total charge generated by the SiPM in
response to the impacting photons. The integration window
(or gate) is adjusted to match the signal development and it
is synchronized to the LED driver pulsing frequency.

The proposed experimental activities start with the optimal
setting of the sensor bias voltage, defined maximizing the
resolving power defined as:

APP

)
Ogain

R= (12)
where A, is the peak-to-peak distance in the spectrum and
0 gain accounts for the single cell gain fluctuations:

Ogain = (07 — 03)"/?,

(13)

being o¢,; the standard deviations of the 0- and 1-
photoelectron peaks [17]. R is a figure of merit measuring
the capability to resolve neighboring peaks in the spectrum. In

Uhttp://www.hamamatsu.com/.

fact, following the Sparrow criterion [18] according to which
two peaks are no longer resolved as long as the dip half way
between them ceases to be visible in the superposed curves,
the maximum number N,,,, of identified peaks is given by:
R2
N, < —,

max 4

where it has been assumed the width of the peaks to grow
as the squared root of the number of cells (as confirmed by
the data reported in Fig. 5).

(14)
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Fig. 5: Peaks width for the spectrum Fig.2 by a multi-Gaussian fit. The dash
lines represent the 95% C.L. for the fit, shown with the solid line. The circles
indicate the outliers.

The outliers, the data points that are statistically inconsistent
with the rest of the data, are identified with the Thompson Tau
method [19] and discarded.

A typical plot of the resolving power versus the bias voltage
is presented in Fig. 6. The optimal biasing value corresponds to
the maximum resolution in the plot and it is used as a working
point. After the sensor calibration, spectra for different light
intensities are recorded and analyzed as reported below.
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Fig. 6: Scan of the resolution power R as a function of the bias voltage at
fixed temperature (25°C) and light intensity. The working point is given by a
polynomial fit and equal to 70.28 V.

TABLE II: Acquisition parameters for the reference run presented in this work.

Vbias[V] GateWidth [ns] Trigger frequency [kHz] Temperature [C']

70.3 300 100 25.0

B. Multi-peak spectrum analysis

Spectra recorded in response to photons impacting on the
sensor can be seen as a superposition of Gaussians, each



corresponding to a well defined number of fired cells. The
key point in the analysis technique is the estimation of the
area underneath every peak, allowing the reconstruction of the
probability density functions.

Initially, areas can be estimated by a Pick&Play (hereafter,
P&P) procedure on the spectrum. In fact, a binned Gaussian
distribution of N, events may be written as:

_(@i—wg)?

Yi = y(%) = Ymazx€ 207, (15)

where y(z;) is the number of events in the bin centered
on x; and Y4, is the peak value, measured in x(. Since
Ymaz = Npir/(0v2m), knowing the content of the bin
centered in xo and estimating o leads to Np. The standard
deviation can also be calculated in a simple way by the Full
Width at Half Maximum (F'W H M), obtained searching for
the position of the bins with a content equals to ¥q./2
and presuming that FWHM = 2.355 X o. Advantages and
limitations of this method are quite obvious: its applicability
is straightforward and essentially requires no tool beyond
a Graphical User’s Interface (GUI) for the control of the
set-up; on the other hand, it can be applied only to peaks
with a limited overlap and uncertainties can only be obtained
by repeating the experiment. In order to overcome these
limitations, a Multi-Gaussian Fit (MGF) procedure was
implemented in MATLAB to analyze the full spectrum,
according to the following work flow:

o Initialization. Robustness and efficiency of minimiza-
tion algorithms is guaranteed by having an educated
guess of the parameter values and by defining boundaries
in the parameter variation, a procedure increasingly
important as the number of parameters grow. Initial
values are provided in an iterative procedure:

o The user is required to identify by pointing &
clicking on the spectrum the peak values and their
position for 3 neighboring Gaussians, fitted to
improve the estimate.

o Initial values for every Gaussian are estimated
by relying on the peak-to-peak distance from the
previous step, presuming the signal from the 0-cell
peak to be centered in the origin of the horizontal
scale and assuming the standard deviation grows
as the squared root of the number of cells.

e Fit. Spectra are fitted to a superposition of Gaussians
with a non-linear y? minimization algorithm presuming
binomial errors in the content of every bin. The most
robust convergence over a large number of tests and
conditions have been empirically found bounding pa-
rameters to vary within 20% of the initial value for the
peak position, 30% for the area and 50% for the standard
deviation.

V. RESULTS AND DISCUSSIONS.

Exemplary spectra for three light intensities were recorded
and the raw data distributions are shown in Fig. 7, where
the horizontal scale in ADC channels measures the integrated
charge in a pre-defined gate. In the following, the analysis
steps are detailed for the distribution corresponding to the
highest mean photon number, hereafter identified as the Refer-
ence Spectrum. Remaining spectra will be used to assess the
robustness of the approach and the validity of the model, with
the results summarized at the end of the section.
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Fig. 7: Exemplary spectra. The mean number pps; of photo-electrons is
measured to be 1.08040.002 (RUN1), 1.994+0.003 (RUN2) and 7.814+0.01
(Reference Spectrum).

Spectra are seen as a superposition of Gaussians, with
parameters estimated according to the methods introduced in
Section IV. The outcome of the procedures for the Reference
Spectrum is reported in Table III for the P&P and the MGF
procedures. For the former, uncertainties in the estimated
parameters are the standard deviations from five data sets
acquired in identical conditions while for the latter errors result
from the fitting procedure (Fig. 8).
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The characteristics of the experimental distribution can
initially be studied referring to the mean number of fired cells.
A Model Independent (MI) estimate is provided by:

ADC
pMI = ——, (16)
App
where
ADC — ZWADC (7)
XY

is the mean value of the experimental distribution (being y;
the number of events for the i bin) and A, is the mean
peak-to-peak distance, defining the gauge to convert values in
ADC channels to number of cells.

TABLE III: Peak position, width and experimental probability of having N
photo-electrons from the Pick&Play (P&P) procedure, compared to the results
from the Multi-Gaussian Fit (MGF). The results are for the reference spectrum.

PeakPosition[ADC| PeakWidth[ADC) Eap. Probability

N P& P MGF P&P MGF P& P MGF
0 3+1 2.1+0.9 22+1 21.74+0.8 0.092 + 0.006 0.09 £+ 0.01
1 220+ 1 220.1 £ 0.4 25+1 27.34+0.3 0.53 + 0.02 0.56 4+ 0.01
2 427+ 1 428.0 £ 0.3 301 31.54+0.2 1.75 + 0.06 1.86 £ 0.02
3 635+ 1 633.6 £ 0.2 32+1 36.0 £ 0.2 3.8+ 0.1 4.17 £ 0.02
4 838+ 2 837.5+£0.2 38+1 40.5 £ 0.2 7.0+£0.2 7.21 +£0.04
5 1044 + 2 1041.3 £ 0.2 41 +1 44.7+ 0.2 9.9+0.2 10.30 £ 0.04
6 1247 + 2 1243.7+£0.2 45+ 1 48.2+ 0.2 12.2+ 0.3 12.67 £ 0.05
7 1449 £ 3 1445.6 + 0.2 50+ 3 51.94+0.3 13.4 £ 0.8 13.43 £ 0.06
8 1650 + 4 1645.8 + 0.3 57+ 2 54.8 4+ 0.4 13.3+ 0.5 12.71 £ 0.07
9 1853 £4 1846.4 + 0.4 67 +2 59.5 £ 0.6 129+ 04 11.2+0.1
10 —_ 2046.5 £ 0.6 —_— 62.0 + 0.9 —_ 8.7+ 0.1
11 — 2245+ 1 - 66 £+ 2 —_ 6.6 + 0.2
12 - 2445 + 1 - 68 +2 - 4.4+0.2
13 - 2632 + 2 - 65+ 3 - 2.4+0.1
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Fig. 8: Outcome of the MGF procedure. Individual Gaussians are in red,
while their superposition is displayed in green. The x?/d.o.f. measures the
fit quality.

The value of pjps; can be compared to what is estimated
presuming a pure Poissonian behaviour and referring to the
probability P(0) of having no fired cell when the expected
average value is pzp, where Z P stands for Zero Peak:

pzp = —In(P(0)) = —In (A) . ay)
Atot

being Ay the area underneath the first peak of the spectrum
and Ay, the total number of recorded events. Results are
shown in Table IV.

TABLE IV: Estimates of the mean number of fired cells by the average
value of the experimental distribution and from the probability of having
none, assuming an underlying Poissonian distribution. Errors result from the
uncertainties in the peak-to-peak distance and in the area of the zero-cell peak.

KNI Hzp
P&P 7.6 £03 6.99 £+ 0.06
MGF 7.81 £ 0.01 7.08 £ 0.03

The P&P procedure shows a good compatibility with the
hypothesis, while the MGF procedure, due to the smaller
errors, presents an evident discrepancy.

The question can be further investigated considering the
full distribution and comparing the experimental probability
density function with the assumed model distribution by a 2
test, where:

Npeaks—1

=y

k=0

Wy X (Aobs,k - A’model,k)zv (19)

being Agps,; the number of events in the kth peak of the
distribution, A,,04e1,x the corresponding number estimated
from the reference model and wy, the weights accounting for
the uncertainties in the content of every bin. Presuming a
Poissonian distribution with mean value /7, the returned
values of the x2/d.o.f. are =~ 20 for the P& P procedure and
~ 300 for the MGF. The x2/d.o.f. values, even assuming p
as a free parameter, exceeds the 99% C.L. for both methods
confirming that the experimental distribution may not be
adequately described by a pure Poissonian model.

As a further step, the spectra were compared to the P ® G
distribution model introduced in Section III, Eq. 10, where the
actual number of fired cells results from avalanches triggered
by the incoming photons and by the optical cross-talk.
The optimal values of the model parameters, namely the
cross-talk probability exr and the mean value p of the
distribution of cells fired by photons, are determined by a
grid search according to the following iterative procedure [20] :

e the X2 /d.o.f. surface, henceforth referred to as ¥, is
sliced with planes orthogonal to the exr dimension, at
values €x7 changed with constant step;

e in each slice, the minimum of the X(éxr,u)) curve
is searched and the value fiy,in 0 corresponding to the
minimum 1is identified;

e the X(exr, fhmin,0) curve is scanned and the position
€% of the minimum is identified by a local parabolic



fit, to overcome the limitations by the choice of the
step in the grid;

e the procedure is repeated for X(e%,, ) vs p, leading
to the determination of the minimum in p*.

This method leads to estimate the optimal parameters p*
and €% by the minimization of the x?/d.o.f. surface for the
two variables ;1 and ex7 independently. The surface ¥ and
the (e, 1) and L(exr, p*) curves are shown in Fig. 9.
Uncertainties are calculated assuming a parabolic shape of the
x?/d.o.f. curves, leading to variances estimated by the inverse
of the coefficient of the quadratic term [20], [21]. The results
for the reference spectrum are p* = 7.06 £0.02 and €% =
0.090 =+ 0.004.
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Fig. 9: x?/d.o.f. surface (top panel) and parabolic behavior nearby its
minimum (bottom).

In order to account for the two-parameter correlation in
the calculation of the uncertainties, it is worth to referring to
the confidence region of the joint probability distribution [22]
[23]. When the parameters are estimated minimizing the x?
distribution, confidence levels correspond to regions defined
by iso-x? curves. For two parameters, the region assumes an
elliptic shape around the ¥ minimum, x?2, . The ¥ contour
at the constant value of x2. + 1 plays a crucial role due to
its specific properties. In fact, the resulting ellipse contains
~ 38.5% of the joint parameter probability distribution and

its projections represent the ~ 68.3% of confidence interval
for each parameter (o; and o03). In addition, the correlation p
among the parameters may be written as:

2 2
p=21792 4099, (20)
20102

where 6 represents the counter-clockwise rotation angle of the
ellipse. The detailed demonstration is reported in Appendix C.
In this specific case, the y2,, value is determined evaluating
the x?/d.o.f. surface at the point of coordinates (u*, €% )
while the ¥ contour at x2,, + 1 is shown in Fig.10 (black
crosses). The fit curve (red line) returns the value of the ellipse
center (u°,e% ) (black circle). The projections of the ellipse
on the i and ex 7 axes are the uncertainties on the two values.
The results for the reference spectrum are p° = 7.06 %+ 0.05
and €% = 0.09+0.01. Comparing these values with (u*,€% 1)
(black cross) it is possible to infer that the correlation does not
affect the determination of the parameter central values while
increases their standard deviation by a factor of about two.
As a consequence, u° and €%, with their uncertainties are
retained as the best estimate of the model parameter values.
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Fig. 10: The point of the x2/d.o.f. surface at the constant value of x2, +1
are the black crosses, the fit curve is the red line, the center of the ellipse
(u_o,e()){T) is represented with the black circle and the point (M*,E}T) is shown
with the black cross.

The angle returned by the ellipse fit is used to calculate the
correlation p between the two parameters through the equation
(20). The result for the reference spectrum is p = —0.8. Then,
applying the relation (11) and exploiting the full covariance
matrix, the value and the uncertainty of the mean of the PR G
model can be obtained. For the reported spectra it results to
be 7.76 £+ 0.03.

The result of the fit to the data distribution with the
P ® G probability function is displayed in Fig. 11, showing
an excellent agreement between data and model.

The quality of the result is confirmed by the data reported in
Table V, where the mean value of the Poissonian distribution
obtained by the ellipse fit (u°) and by the Zero Peak are
compared, together with a comparison between pjps; and
1°/(1 — %), the mean value of the P ® G distribution.
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Fig. 11: Data from the reference spectrum are compared to a simple Poissonian
model with mean value 7 p (blue) and to the P ® G model (red), accounting
for the optical cross-talk. The x? value rule out the former at 9% C.L..

TABLE V: Estimates of the mean number of fired cells for P ® G model.

MO rzP

Mean Value of the Poisso- ~ 7.06 4 0.05 7.08 £0.03

nian distribution

HT 1/ = €Seq)

Mean Number of Fired 7.76 £ 0.03

Cells

7.81 £0.01

Results by the other recorded spectra are summarized in
Table VI and Fig. 12 for the MGF procedure, confirming the
validity of the compound Poissonian model and the need to
account for detector effects to have a proper understanding of
the phenomenon being investigated.

TABLE VI: Estimate of the mean number of fired cells with the P ® G model
using the RUN1 and RUN2 data-sets. Also in this case, the P ® G model
shows an agreement at the 99% C.L.. The measured x2 is 12.6 for the RUN1
and 12.0 for the RUN2 respectively.

0

I rzp
0.97 £ 0.01 0.985 + 0.002
Mean Value of the Poisso-
nian distribution
1.82+0.01 1.823 £ 0.004
M1 1/ = ekr)
1.080 £ 0.002 1.08 +0.01
Mean Number of Fired
Cells
1.994 £ 0.003 1.99 +£0.01
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Fig. 12: Results of the MGF procedure on the low and middle intensity,
RUNI and RUN2. The pure Poissonian model with mean value iz p (blue)
is compared to the P ® G model (red).

VI. CONCLUSION

Instruments and methods for the investigation of the
statistical properties of the light emitted by an incoherent
source have been developed and validated. The experimental
set-up is based on Silicon Photomultipliers, state-of-the art
light detectors, embedded into a flexible, modular, easy-to-use
kit. Methods fold the characteristics of the emitted light and
the detector response, with an increasing level of refinement.
The model development allows to address advanced topics
in statistics and data analysis techniques, targeted to master
students in Physics or Engineering.
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APPENDIX A

In this appendix it is demonstrated that the convolution of
a Poissonian distribution of mean value A\ (3) and a Binomial
probability 7 (4) results in a Poissonian distribution of mean
value An:

e Multiplying and dividing by 7" each element in the
series, Eq. 5 can be written as:

Pd,el - Z Bd,n (n)Pnph(A)
n=d

I A )
N ; d!(n —d)! ’

e Hence, defining n — d = z:

= z 1—- n Te?
Py =y (A () I

z=0
An)de= = (An)? (11— N
:%XZ(Z’? (77)

O S (A - M)?
_ (n)xz( n*

e The series actually corresponds to the Taylor expansion
of e} so that:

Py = Z Ban (1) Prpn(X) =

n=d

e~ (An)d
d!

APPENDIX B

This appendix is dedicated to the demonstration of the
relations for the probability density function (10), the mean
value and variance (11) of the total fired cell number m
assuming that every primary events can generate a unique
infinite chain of secondary pulses.

This purpose is pursued by applying the probability gener-
ating function definition and properties.

For a discrete random variable ¢, the generating function is
defined as:

The probability distribution function, the mean and the
variance of the random variable ¢ can be calculated as:
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1 d"o
P(p=m)=—5x = @21)
me = ®(1) (22)
02 = o(1)" + (1) — [@(1)]? (23)

The random variable considered here is the total number of
detected pulses, m. Because it is defined by a sum of discrete
random variables, its generating function is the composition
of the pure Poisson distribution generating function:

P(s) = et(s=1)

and of the geometric distribution generating function:
G(s)=> Plg=i—1)xs'
i=1

oo
= ZEXTZ_l X (1 — EXT) x s
=1

(1 — EXT)S
1-— EXTS '

Finally, the analytical expression of the generating function
for the total number of fired cells result to be:

PoG=P(G(s))
— nl(G(s)-1)

_ or(5),

Using the relation (21) it is possible to derive the probabilities
to detect an arbitrary number of total pulses. For 0, 1 and 2
events the result is:

P®G0)=e*,
P G)=e*"u(l —exr),

(1 = exr)?

PRG2)=e"|pu(l—exr)exr + 5

An analysis of these expressions lead to the compact
and general formula reported in (10), which refers to the
compound Poisson distribution and is valid for m=0, 1, 2, ... .
In addition, applying the properties (22) and (23) at P o G, it
is possible to obtain the mean value and the variance of the
distribution of the total number of fired cells, as expressed by
the relations in (11).

APPENDIX C: THE COVARIANCE ELLIPSE

In this appendix the confidence region of two variables is
demonstrated to assume the shape of an ellipse. Moreover,
the relation between the parameters describing the ellipse,
the standard deviation of the variables and their correlation
is established.

The joint probability density of two variables x7=[x, z5]
gaussian distributed may be written as:

Pa)=k-ep{ ~ S -w - p} @9

where k is a normalization constant, u” = [ups] is the
vector of the mean values of = and C' is the covariance matrix:

€= B~ -y = |7 %

K a 021 03|

The diagonal elements of C' are the variances of the
variables x; and the off-diagonal elements represent their
covariance, which can be expressed as:

012 = P0102,

where p is the correlation coefficient.
Curves of constant probability are determined by requiring
the exponent of the equation (24) to be constant:

(x—w)'C Mz —p)=c (25)

(z1 — 1)? 5 (z1 — 1) (w2 — p2) | (22— p2)®
p) —ap + ) =c,
o 01 02 P

where ¢/ = ¢(1 — p?). This equation represents an ellipse
with the center located at (141, p2) and the semi-axes placed
at an angle 6 with respect to the =1, =2 axes.

As shown in the folllowing, the equation (25) can be re-
written as a sum of squares of two stochastically independent
variables, which results to be x? distributed with two degrees
of freedom:

& &
A

This relation describes an ellipse centered in the origin of
the reference sistem and with the semi-axes of lenght a, b
parallel to the &1,£, axes.

As a first step, the origin of the reference system is translated
in the center of the ellipse, resulting in equation:

(26)

27

where T = x — L.
As a second step, axes are rotated in order to coincide with
the (&1, &2) reference sistem by the transformation:

#=Q,
where
cosf sinf
Q= [ sin 6 cos@] )



As a consequence, equation (27) is turned to the form

€'QCTQe =¢,
corresponding to the equation (26) as long as
1
QC1Q" = [ ?} ,
0 3
or, equivalently,

a> 0
QCQ" = [0 bz]

The vector of the mean values and the cvariance matrix of
£ results to be:

pe = E{¢} = QE{z} = Qu

Ce = B{(§ — ne)(€ — ne)"}
= QBE{(z — p)(x — w)"}Q"
=QCQ"

So it can be noticed that the eigenvalues of the covariance
matrix C¢ correspond to the squared semi-axes of the canonical
ellipse (26).

Because of the symmetry of the covariance matrix, C' can be

diagonalized exploiting its decomposition in eigenvalues and
eigenvectors:

(28)

C=UAUT,

where A is the diagonal matrix of eigenvalues and U is
the rotation matrix constitued by eigenvectors. Comparing this
formula with the expression (28) and using the properties of
the rotation matrix (QQT = QTQ = I, detQ = 1) it can be
inferred that:

U=Q" A =Cg.

As a consequence, the eigenvalues of C can be obtained
through the quadratic equation:

det(C' — ) =0,

whose solutions are:

1
Mo = 5[(0F +03) £ /(07 +03)2 — 403031 - p)].
The lenghts of the ellipse semi-axes result to be the square root
of the eigenvalues multiplied by the two degrees of freedom
x? value:

b=/ x2\s. (29)

The eigenvectors of C' can be found with the following
equation:

a =/ x3\

For v = 1:
O'% — Al p0'10'2 ul,l _ O
poroy 05 — A |u1z2 ’
and the solution is:
_ —pPO0102
Uy = o {a% )\J y

where a7 is a normalization constant. In the case of ¢ = 2:
2\
o1 2 pPo102 u2,1| _ 0
2 =
pPo102 g5 — )\2 U2,2

and the solution is:

2
U = (2 92— )\2
—poiog|’

where as is the normalization constant. Using the eigenval-
ues definition, it can be proved that 03 — Ay = —(0? — \y).
As a result, the U matrix turns out to be equal to Q7 with
cos ) = —poroo and sinf = U% — A\1. From these identities it
is possibile to calculate the angle 6 between the ellipse axis,
which lies on &;, and the x; axis:

U%*)\l

pPo102

tanf = —

As 6 belongs to the range [-7/2, w/2] and the above
expression is quite complex, it is more convenient to estimate
the tan 26:

2tanth  2poio9

1—tan?6; 2

tan 20 = 5
01 — 03

(30)

The angle 6 measures the rotation which brings the (z1,
x2) coordinate system in the (&1, &) reference system, which
represent the rotation undergone by the ellipse. The rotation
matrix ) has been completely determined and the ellipse has
been entirely defined.

The covariance ellipse of the bivariate normal distribution
assumes a particular importance when x? = 1 and its features
can be analyzed in two extreme cases:

e if the variables are not correlated (p = 0), then § = 0,
a = o1 and b = o9, which means that the ellipse axes
are parallel to z; and equal to the variable standard
deviations,

e if the correlation is maximum (p = £1), then the ellipse
degenerates into a straight line of lenght a = /0% + o2
(in fact b = 0).

In all the intermediate cases the ellipse is inscribed in
a rectangle of center (i, p2) and sides 207 and 205. The
projections on the z; axes of the four intersection points
between the ellipse and the rectangle represent the 68%
confidence interval for the parameter centered in the mean
value ;.
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All these characteristics of the covariance ellipse can be
demonstrated exploiting the conic equations. The general
quadratic equation:

Ax? + Bayxo + C23 + Dy + Exg + F =0 (31

represents the canonical ellipse if B =0 and AC > 0. It is
always possible to find a new coordinate system, rotated by an
angle 6 with respect to the z; axes, in which the equation does
not involve the mixed variable product. Calling &, the new set
of axis, the x; variables can be expressed as:

x1 =&1cosh —Exsinf xg = & sinf + &5 cosh.

Substituing these relations in (31) and collecting the similar
terms a new equation in &; can be obtained:

£2(Acos? 0 + Bcosfsind + Csin? 6)+
£169(—2A cos 0sin @ + B(cos? 6 — sin? ) + 2C sin 6 cos 0)+
€2(Asin? 0 — Bcosfsinf + C cos? 0)+

&1(Dcosf + Esind) + &a(—Dsinf + Ecosf) + F = 0.
(32)

In order to eliminate the &;&- term, the angle 6 has to satisfy:

—2A cos @sin§ + B(cos? § — sin?#) + 2C sinf cosf = 0.
Simplifying the equation:

2(A — C) cosfsinf = B(cos? § — sin’ 0)

2sinfcos B
cos?f —sin’d  A-C (33)
tan 26 B
an2f = ——
A-C
In the specific case corresponding to equation (25),
1 2 1
=5 B=-— o=
g1 g109 a

As a consequence the expression (33) assume the form of
the relation (30). Finally, the coefficients of the second order
variables in equation (32) have to be interpreted as the inverse
square of the semi-axes lenghts. Replacing the definition of A,
B and C and solving for a and b gives:

_ otos(1 - p?)
T\ GZeos?o—2 Osin 0+ o sin” 02
5 pO102 COS 0SNG + o7 sin

. o1~ )
02sin? § — 2poi 0 cos sin 6 + o2 cos? 02

Expressing € as a function of p and o; it is possible to obtain
for the semi-axes the same definition as found previously in
equation (29).
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