B.2.3

Fertilizer and photopeak identification

SG6142C

Dedicated kit	
Description	pp.
SP5630EN Environmental kit	181
tate in teacher land	
2N . 3	
	ī

Difficulty

Execution Time

Data Analysis NO

Radioactive Sources NO

Requirements

No other tools are needed.

Equipment

SP5630EN - Environmental kit

Purpose of the experiment

Processed the energy spectrum of Fertilizer sample and identify the Potassium peak. The experience will guide the user to select a ROI and perform a Gaussian fit on the peak. This sample can be used also as a reference for the spectrum calibration.

See the Application

Fundamentals

Potassium is a natural element whose radioactive isotope 40 K is widely available on Earth, especially in food and in human bodies. It plays a key role in geologic fields for the dating samples and rocks. Indeed, one of the main decay is in 40 Ar, which remains locked up in minerals. Knowing the decay time of 40 K into 40 Ar, and measuring the ratio between the two elements, it is possible to give a precise estimate about the origin of that material.

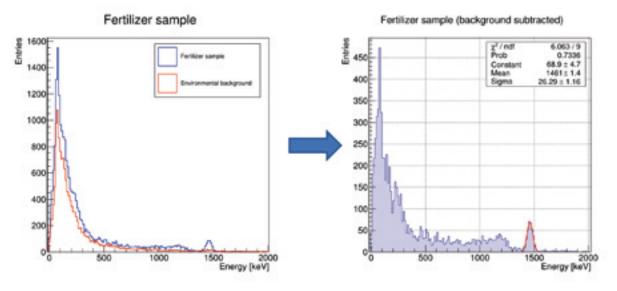
Another interesting application is the so-called Banana Equivalent Dose (BED), a "user-friendly" unit to measure radioactivity. Bananas naturally contains ⁴⁰K and 1 BED corresponds to 0.1 µSi of equivalent dose. To understand the proportions, consider that a dental X-ray corresponds to eating 50 bananas, an average daily dose of natural background is 100 BED, a fatal dose is 100 million bananas. This quantity has been introduced to get users familiar with natural low-radioactive objects.

Carrying out the experiment

Put the i-Spector digital into the base and place the Fertilizer box into the place-holder. Power on the i-Spector and connect the Ethernet cable. Wait until the temperature is stable from the web interface (it can take half an hour from power on).

Check the waveform, modify the threshold and gate width, if needed, then start the measurement of the energy spectrum.

Take 30 minutes of acquisition with the Fertilizer.


NOTE: in case of background measurement, settings and acquisition time must be the same. Lead blocks could help in distinguish a clearer peak but they must be used if just employed in background measurement only.

Experimental setup block diagram

Results

Several steps can be done in this experiment. First, the background subtraction by saving the .csv of the two and by making a bin-by-bin subtraction of the two spectra. A small portion of the 40K peak can be seen in the background spectrum too. The ⁴⁰K peak can be then selected through a ROI and fitted by means of a Gaussian function. The peak can be used together with the LYSO crystal for the energy calibration of the system (ID.6140).

Fertilizer sample: total contribution and background on the left; background subtracted on the right with a Gaussian fit on the ⁴⁰K peak. The mean value is in agreement with the expected value of 1460.8 keV

This experiment is also possible with the following kits

