B.4.1

Response of a Plastic Scintillating Tile

SG6121

Dedicated kit				
Description	pp.			
SP5600D Educational Beta Kit	182 179			

Difficulty					
3 3					

Exe	cuti	ion	Time	е
栗	g.	29	19	

Data Analysis Radioactive Sources

NO YES

Requirements
Beta Radioactive Source

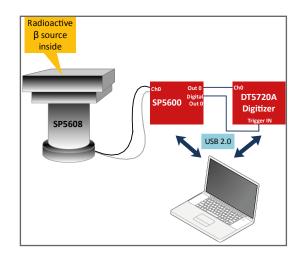
Equipment

SP5600D - Educational Beta Kit

Purpose of the experiment

To get acquainted with a set-up based on a plastic scintillator tile coupled to a Silicon Photo-multiplier.

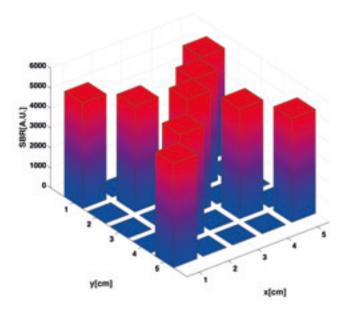
See the Application

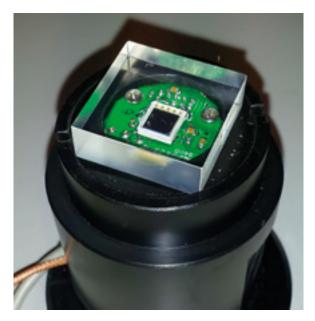

Fundamentals

Particle detectors based on scintillating material coupled to a photosensor are in common use in nuclear and particle physics, medical, industrial and environmental applications. The choice of the scintillator is dependent on the end-user specifications but for a large set of applications plastic scintillators represent a cost effective viable solution. The CAEN kit comprises a plastic scintillator tile of $5 \times 5 \times 1$ cm³ volume, directly coupled to a 6×6 mm² SiPM. The sensitive area is a trade off between the requests for some of applications (e.g. cosmic ray detection or inspection of thin layers or filters) and the homogeneity of the response of the system.

Before addressing a variety of lab applications, the student is guided through the basics of the system.

Carrying out the experiment


Connect the power and the MCX cables of the SP5608 tile to one channel of the SP5600. Connect the two channel outputs to DT5720A: the analog output to the channel 0 and the digital output to "trigger IN" of the digitizer. Use the GUI to optimize the system parameters (bias, gain, discriminator threshold). Once this is done, switch off the power supply, open the SP5608 top cover and position the beta source on the scintillating tile in the center. Close the support top, switch ON the power supply and measure the counting rate. Repeat the measurement moving the source in several positions over the tile and acquiring the signal/background ratio.


Experimental setup block diagram.

Results

In response to the incoming beta particles, the system is designed to deliver a high signal. However, the student shall consider the optimal setting of the discriminator threshold, taking into account the dark count rate, the variation in the beta source counts, the signal to noise ratio and the quality of the recorded beta spectrum. Moreover, for the optimal setting it is significant to monitor the homogeneity of the response as the source is moved across the tile.

Homogeneity of tile response to a beta source.

Scintillating tile coupled to a sensor.

This experiment is also possible with the following kits

see p. 179