
SG6118B

Study of the ¹³⁷Cs spectrum: the backscatter peak and X rays

Dedicated kit	
Description	pp.
SP5600EMU Emulation Kit	180
72	

Difficulty **888**88

Execution Time

Data Analysis YES

Radioactive Sources YES

Requirements

Gamma Radioactive Source

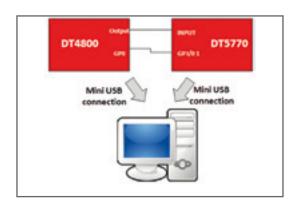
Equipment

SP5600EMU - Emulation Kit

Purpose of the experiment

Study the characteristics of the ¹³⁷Cs spectrum, with special relevance information about the experimental setup used in gamma spectroscopy. See the **Application**

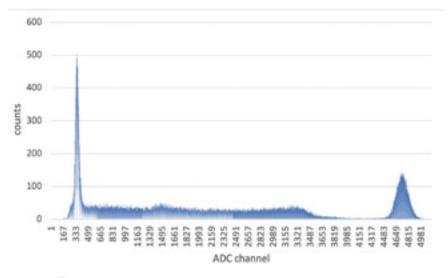
Fundamentals


The Compton effect is linked with experimental issues, since it is caused by the interaction of photons with the electrons instrument that measure the gamma radiation. In a real detector setup, some photons can and will undergo one or potentially more Compton scattering processes (e.g. in the housing material of the radioactive source, in shielding material or material otherwise surrounding the experiment) before entering the detector material. This leads to a peak structure, the so-called backscatter peak.

The basic principle for the backscatter peak formation is the following: gamma-ray sources emit photons isotropically, some photons will undergo a Compton scattering process with a scattering angle close to 180° and some of these photons will subsequently be detected by the detector. The result is an excess of counts in the Compton part of the spectrum, the so-called backscatter peak. This peak has an energy approximately equal to the photopeak energy minus the Compton edge energy.

The 137 Cs gamma photopeak at 661 keV is responsible also for a low energy emission (i.e. emission of an X-ray). This is due to the decay mechanism of 137 Cs: it decays via β decay into an excited state of barium-137, which than passes to the ground state, giving rise to the 661 keV photopeak. Emission of a 661 keV γ photon is not the only way excited barium gives off its energy. In some cases barium-137 can transfer its energy to an electron of its 1s atomic shell ("internal conversion"). The hole in the 1s shell is replenished from higher shells. This process gives rise to the emission of the characteristic X radiation of barium, which is the Ka line nearly at 32 keV (X rays are photons in the range 100 eV-100 keV).

Carrying out the experiment


To perform the experiment, connect the DT4800 output to the input channel of the MCA DT5770 and use the DT4800 GP0 as digitizer "trigger IN". The Emulation Control Software Interface allows user to generate exponential decay signals with programmable rise time and fall time and it is possible to emulate signals from ¹³⁷CsI radioactive. The spectrum can be recorded and analyzed by the MCA.

Experimental setup block diagram for the experiment.

Results

The user can calibrate the system by using the spectrum itself. The backscatter peak and the K_{α} line can be identified. After calibrating the spectrum, it is possible to estimate the energy of the two peaks and compare them with theoretical predictions.

Plot of the 137 Cs spectrum acquired by the MCA. The backscatter peak and the K α line are indicated with the red arrows.

This experiment is also possible with the following kits

see

p. 179

see p. 179

PREMIUM

INVESTIGATION

INVESTIGATIO

see p. 181

SP5630EN

Environmental kit

