All Community “Particle Physics” experiments
Development and Construction of a Muon Telescope
Development and Construction of a Muon Telescope
All Community “Particle Physics” experiments
Development and Construction of a Muon Telescope
Through the analysis of cosmic rays we can gain insights into cosmic phenomena and the laws that govern them - ICD 2024
In questa tesina ho scelto di parlare dei raggi cosmici e dell’esperimento di Rossi e Hall, che ha ispirato la realizzazione del piccolo esperimento presentato nella seconda parte. Parlerò infine delle applicazioni pratiche della misura del flusso di muoni cosmici
Quel est le taux de rayons cosmiques en fonction de l’altitude et de la profondeur géologique? Théorie et mesures. La physique et l’astronomie en particulier sont des sciences qui me passionnent depuis quelques années et je compte poursuivre mes études dans ce domaine. Le travail de maturité est une occasion d’approfondir un sujet qui me captive vraiment et qui peut m’être utile dans le futur. Lorsqu’on nous a présenté les différentes formes de travail de maturité, je me suis interrogé sur la façon dont je souhaitais conduire mon projet: effectuer un travail de recherche en répondant à une problématique mais également mener un travail d’expérimentation me semblait intéressant. J’ai eu par conséquent l’idée de combiner la pratique et la théorie, en réalisant des mesures tout en répondant à une problématique.
In this experiment the software COMPASS was used to perform the Gamma Spectroscopy and some multiparametric measurements with 22Na and 137Cs nuclear sources and a NaI (Tl) scintillator detector.
The SiPM kit allows to perform cosmic ray and β particle detection using a plastic scintillating tile. The tile (model SP5602) has a sensitive volume of 150 x 150 x 10 mm3 and two loops of embedded wavelength shifting (WLS) fiber to collect and deliver the light to the SiPM sensors.
The CAEN DT5790N is a digital acquisition system which houses two high voltage supplies and two highspeed (12bits, 250MHz) waveform (pulse digitizers. These in tandem with the use of post processing software combine to produce a Software Defined Electronics (SDE) system that can be used in several advanced teaching experiments. FPGAs and built-in software can be used to display the pulse waveform and produce a time-stamped output (4 ns intervals) in a text list for post processing, e.g via MATLAB, Python, LabView, ROOT, BASIC, etc. The SDE can than be reconfigured as neeeded and used to run many nuclear and other expermiments in an advances teaching lab course. This serves to expose students to modern state-of-the-art data acquisition technology. Experiments such as Fission Neutron, Time-of-Flight, Comptron Scattering, Co-60 Gamma Coincidence, Na-22 Gamma-Gamma Annighilation. Muon Lifetime, etc. are well suited for SDE. The SDE system also provides a very adaptive and cost-effective substitute for NIM or CAMAC electronics as SDE can be easily set up with only a single digitizer box and a computer for many different experiments. Typical data using the SDE application we have developed for several advanced teaching lab experiments will be shown. Several other digitizers similar to the CAEN unit are also available for SDE.
The aim of this lab was the full characterization of a system for high energy cosmic ray detection.
During last decade a lot of outreach activities were born to bring Science in the youths’ hearts through the study of elementary particles physics using frontier detectors. The aim of this project, i-SpeChe, is to develop a multipurpose prototype detector for a wide range of experiments from the study of natural radioactivity to cosmic rays flux using a SiPM matrix easily coupled to different scintillators or, to realize a Water Cherenkov Detector, to water tank. All the detectors used for outreach activities must be robust, easy to use and transport, LV based and economic. The choice is usually scintillator+ SiPM and this limits the knowledge of the wide range of existing detectors used in particles and astroparticle physics. Our effort is to realize a Cherenkov detector coupling water to a SiPM matrix. Cherenkov detectors are now found in a wide variety of unique applications throughout physics, astrophysics, and biomedicine, with more powerful, and larger devices continuing to be developed and implemented. Particular examples include the many detectors at particle accelerators for hadronic particle identification, the large water Cherenkov detectors used for neutrino detection both for astrophysics and accelerator studies, and the imaging air Cherenkov telescopes used to study very-high-energy γ rays in cosmic radiation. Most of the experiments based on Cherenkov effect in water use PMT. The use of SiPM coupled with water is still under study and i-SpeChe is the first approach for the realization of an outreach Water Cherenkov detector with SiPM.
An introduction to Cosmic Rays and its history