All “Nuclear Physics and Radioactivity” experiments

An EDUGATE simulation toolkit based on the educational EasyPET

September 24th, 2021| |CAEN Experiments, Nuclear Imaging - PET, Nuclear Physics and Radioactivity, Nuclear Physics and Radioactivity

EasyPET is a new concept of a Positron Emission Tomography (PET) scanner using an innovative acquisition method based on two rotation axes for the movement of detector pairs. Due to its simplicity, it is suitable for education purposes, to teach students about the PET technology and its basic concepts, from the radiation detecting and analogue pulse analysis to the coincidence sorting and image reconstruction. The concept allows achieving high and uniform position resolution over the whole eld of view (FoV), by eliminating parallax errors due to the depth of interaction (DoI), which are typical of ring-based PET systems, so quality images are obtained even without state-of-the-art image reconstruction algorithms. The technology developed at the University of Aveiro with a patent-pending, is licensed to CAEN S.p.A, and included in the educational catalogue of the company. In this work, a simulation toolkit based in the Edugate platform was developed to simulate the EasyPET system. It can simulate all the physical aspects of the product, such us the scanning range, variable Field-of-View (FOV), scintillator energy resolution, coincidence time and energy window, among others. A simple image reconstruction algorithm based on Filtered-back-projection (FBP) is implemented. The toolkit allows a quick analysis in classroom of the simulation results. The platform was also used to study the new EasyPET 3D version, and a simulation of a NEMA NU 4-2008 IQ phantom was performed, demonstrating the capability of the platform not only for education purposes but also for research.

Laboratorio di Fisica 1

September 24th, 2021| |CAEN Experiments, Nuclear Physics and Radioactivity, Nuclear Physics and Radioactivity, Particle Detector Characterization, Silicon Photomultipliers

Il radon è un gas radioattivo, inodore, incolore e insapore; tutte caratteristiche che non lo rendono percepibile dai nostri sensi e perciò difficile da individuare e da quantificarne la presenza. Esso, derivato dal decadimento dell’uranio presente nelle rocce e nel suolo, si trova principalmente nei locali, specie quelli a diretto contatto con il suolo, come cantine e scantinati, con possibilità tuttavia di arrivare ad irradiarsi anche negli ambienti dei piani più alti. Il pericolo maggiore del gas radon è correlato all’inalazione: inspirato in quantitativi in eccesso e per periodi prolungati può infatti provocare seri danni alla salute, in particolare ai polmoni, qualificandosi come seconda causa di rischio per l’insorgenza di un tumore, dopo il fumo. La prima prevenzione per combattere questo gas è la costante areazione dei locali nei quali è riconosciuta la sua presenza

Erasmus Mundus Program: Quantus software detector’s calibration and efficiency curve

September 24th, 2021| |CAEN Experiments, Gamma Spectroscopy, Nuclear Physics and Radioactivity, Nuclear Physics and Radioactivity

Detectors need calibration before starting data acquisition in both energy and full width half maximum of the signal (FWHM). The first requires multiple known energy peaks so several gamma sources are used, while the second is related to the fact of having Gaussian distribution shapes in the spectrum centred in the peak energy instead of a sharp shape. All the spectra collected and calibration done bring the possibility of calculate the efficiency of the detector, which is a curve showing the relation between energy and efficiency. Thanks to that curve scientists are able to set the best conditions for the acquisition, as well as to determine the activity of an unknown source. Quantus is CAEN high performance software to make Quantitative Spectrometry with Hexagon digital MCA. It permits working with many spectra at the same time. Since it allows setting parameters in the hardware, collecting data and analysing them, it is a useful tool for calibration purpose.

Erasmus Mundus Program: Environmental Measurements with iSpector

September 24th, 2021| |CAEN Experiments, Environmental radioactivity

In this report the radioactivity measurement of samples usually found in the environment was studied, using iSpector Digital (Intelligent Silicon Photomultiplier Tube with Digital MCA). After the energy calibration of the system based on LYSO crystal and the calibration verification and tuning with Potassium Chloride sample, the data analysis of the Pozzolana Sample Spectrum as well as the Background measurement was done. Furthermore, the test sample radiation was identified.

Development of a portable β-spectrometer for in situ measurements of Sr-90 and Y-90 using a plastic scintillator and a silicon photomultipler (SiPM).

September 24th, 2021| |Beta Spectroscopy, CAEN Experiments, Nuclear Physics and Radioactivity, Nuclear Physics and Radioactivity

In this report the characterization of a Silicon Photo-Multiplier (SiPM) detector was done in order to estimate the main features of the detector. The breakdown voltage, the gain, the dark Count Rate as well as the optical crosstalk of the detector were successfully obtained.

Caratterizzazione di Silicon Photomultipliers

September 24th, 2021| |Gamma Spectroscopy, Nuclear Physics and Radioactivity, Nuclear Physics and Radioactivity, Particle Detector Characterization, Silicon Photomultipliers

Il progresso nel campo della fisica nucleare sperimentale ed in particolare negli studi di struttura del nucleo è strettamente connesso allo sviluppo delle tecniche di rivelazione della radiazione gamma, questo vale sia per gli apparati basati su rivelatori a semiconduttore che per quelli basati su scintillatori. Negli scintillatori lo stadio di raccolta della luce di scintillazione viene classicamente realizzato tramite fototubi a vuoto (Photo Multiplier Tubes, PMTs). Questa tecnologia è utilizzata da molto tempo con successo pur avendo dei limiti intrinseci dati ad esempio dalle considerevoli dimensioni dei dispositivi e dalla sensibilità ai campi magnetici. Negli ultimi anni sono stati sviluppati dei nuovi foto-rivelatori al silicio (Silicon Photomultipliers, SiPM) che presentano numerosi vantaggi rispetto ai tradizionali PMTs quali, ad esempio, le dimensioni compatte (spessore minore di 2 mm), la bassa tensione di funzionamento (minore di 100 V) e l’insensibilità ai campi magnetici. I SiPM sono prodotti direttamente da un wafer di silicio impiantando in esso matrici di microcelle lette in parallelo ciascuna delle quali è un diodo (Avalanche Photodiode o APD) che lavora in modalità Geiger.

Caratterizzazione di sensori SiPM per astrofisica e spettrometria gamma

September 24th, 2021| |CAEN Experiments, Gamma Spectroscopy, Nuclear Physics and Radioactivity, Nuclear Physics and Radioactivity, Particle Detector Characterization, Silicon Photomultipliers

Negli ultimi anni si è sviluppata sempre di più la tecnologia per la produzione di un tipo di rivelatore al silicio: il Silicon Photomultiplier (SiPM). Il SiPM è un array di fotodiodi a valanga (APD) posti in parallelo su un comune substrato in silicio. Per le caratteristiche costruttive, i SiPM sono sensibili in un grande intervallo dinamico, dal singolo fotone a 1000 fotoni, nonostante la superficie del dispositivo sia dell’ordine di alcuni mm2, operano ad un basso voltaggio (50V) e sono insensibili ai campi magnetici. Per queste ragioni questi rivelatori sono preferibili ai tradizionali fotomoltiplicatori indiverse applicazioni. Le tecniche basate sul conteggio dei fotoni e sul loro tempo di arrivo, sono utilizzate in molti ambiti di ricerca: nella caratterizzazione di diodi laser e fibre ottiche, in astronomia, in fisica nucleare e nelle misure di emissione di decadimenti fluorescenti in medicina, chimica, scienza dei materiali e biologia. Lo scopo di questa tesi è quello di caratterizzare ed effettuare delle misure di rumore ed efficienza su due tipi diversi di SiPM prodotti dalla Hamamatsu Photonics: • Il modello S12571-100C (2013) • Il modello S13360-1350CS (2016)

An Educational Experience with Linear Absorption Coefficient

September 24th, 2021| |CAEN Experiments, Gamma Spectroscopy, Nuclear Physics and Radioactivity, Nuclear Physics and Radioactivity

In this paper is presented a simple procedure for evaluating the absorption coefficient of aluminum (Z = 13) using a gamma-emitting nuclide, highlighting the characteristics and limits that characterize the measurement. Using the educational kit caen, is possible to investigate the full potential of the adopted method. The results obtained give great confidence in the instruments and the aim of this work is to provide the first tools for conducting a good spectroscopic analysis.

Report on A.1.1 and B.1.5 experiments: a combined analysis

September 24th, 2021| |CAEN Experiments, Gamma Spectroscopy, Nuclear Physics and Radioactivity, Nuclear Physics and Radioactivity, Particle Physics, Silicon Photomultipliers

We report on a common analysis for the experiments of SiPM characterization (A.1.1) and comparison of dierent scintillating crystals: light yield, decay time and resolution (B.1.5). With this proposal, we use CAEN educational kit premium, based on SP5600 power supply and amplication unit connected to the SP5650C SiPM and the DT5720A digitizer. On one hand, we use the SP5601 LED driver. On another hand we use a 137Cs gamma source coupled individually to BGO, LYSO(Ce) and CsI(Tl) crystals with a constant volume (6x6x15 mm3). In the former case, we vary the amplitude (intensity) of the LED driver and verify the spectroscopic response. In the latter case, the light yield is due to a 137Cs gamma source interaction with the respective crystal, and again a spectroscopic response is analyzed. As a proof of concept, pulse high and pulse shape analyses are also proposed. Schematic comparisons of the results obtained with the three crystals are presented.