Background removal procedure based on the SNIP algorithm for γ-ray spectroscopy with the CAEN Educational Kit

November 12th, 2021| |CAEN Experiments, Particle Detectors Characterization

In gamma spectra the energy, the intensity and the number of resolved photo peaks depend on the detector resolution and the background from physics processes. A widely used method for subtracting the background under a photopeak is provided by the Sensitive Nonlinear Iterative Peak (SNIP) algorithm. This paper reports a validation procedure of the SNIP algorithm, based on the invariance of the photo-peak area for different background levels.

A simple and robust method to study after-pulses in Silicon Photomultipliers

November 12th, 2021| |CAEN Experiments, Particle Detectors Characterization

The after-pulsing probability in Silicon Photomultipliers and its time constant are obtained measuring the mean number of photo-electrons in a variable time window following a light pulse. The method, experimentally simple and statistically robust due to the use of the Central Limit Theorem, has been applied to an HAMAMATSU MPPC S10362-11-100C.

An Educational Kit Based on Modular Silicon Photomultiplier System

November 12th, 2021| |CAEN Experiments, Particle Detectors Characterization

Silicon Photo-Multipliers (SiPM) are state of the art light detectors with unprecedented single photon sensitivity and photon number resolving capability, representing a breakthrough in several fundamental and applied Science domains. An educational experiment based on a SiPM set-up is proposed in this article, guiding the student towards a comprehensive knowledge of this sensor technology while experiencing the quantum nature of light and exploring the statistical properties of the light pulses emitted by a LED

Silicon Photomultipliers and SPAD imagers in biophotonics: Advances and perspectives

September 24th, 2021| |Advanced Statistics, CAEN Experiments, Silicon Photomultipliers

Photonics is essential in life science research and the continuous development of methods offers researchers tools of unprecedented sensitivity. Sensors are key to the exploitation of the most advanced biophotonic techniques with highly demanding specifications in terms of single photon sensitivity, time resolution, miniaturisation real-time processing and data throughput. Silicon photomultipliers and Single Photon Avalanche Diode (SPAD) imagers represent the state-of-the-art in photon detection with single photon sensitivity, photon number resolving capability and the possibility to integrate on chip advanced functionalities. As a consequence, they can be the platform for the next generation biophotonic instruments and methods. This paper summarises the main biophotonic techniques and reports exemplary applications of Silicon Photomultipliers and SPAD imagers for fluorescence, chemiluminescence, time correlated single photon counting and imaging. Achievements and current limitations are addressed, pointing as well to the most recent technology advances and highlighting the possible pathways for the near future.