All CAEN Experiments

SiPM Spectrometer: detection of γ‐ray

September 24th, 2021| |CAEN Experiments, Gamma Spectroscopy, Nuclear Physics and Radioactivity, Nuclear Physics and Radioactivity

Even if a SiPM is able to detect very low light intensity, it can be used for detecting a large amount of light in radiation detection with scintillators. The CAEN Mini Spectrometer is based on a Hamamatsu 3×3 mm2 SiPM, model MPPC S10362‐33‐050C, coupled to a scintillating crystal. This sensor, with its 3600 cells, provides a wide dynamic range, allowing the building of a mini spectrometer. Its Dark Count Rate (DCR), due to the large amount of pixels, is one order of magnitude higher than that of the 1×1 mm2; its Dark Count Rate at 0.5 ph. is 3÷4 MHz: this is not a problem for the spectrometer application because we are not interested in counting photons, but in measuring the electrical charge of the large pulse obtained by the pixels signal overlap. A right threshold will remove all the spurious hits.

SiPM characterization

September 24th, 2021| |CAEN Experiments, Particle Detector Characterization, Particle Detectors Characterization, Silicon Photomultipliers

⏳️ Institute: University of InsubriaAbstractThe Silicon PhotoMultiplier (SiPM) consists of a high‐density (up to ~103 /mm2) matrix of diodes connected in parallel on a common Si substrate. Each diode is an Avalanche Photo Diode (APD) operated in a limited Geiger‐Müller regime connected in series with a quenching resistance, in order to achieve gain at

Applications of Digital Pulse Acquisition Systems and Software Defined Electronics (SDE) in Advanced Teaching Labs

September 24th, 2021| |CAEN Experiments, Cosmic Rays, Gamma Spectroscopy, Nuclear Physics and Radioactivity, Particle Physics, Particle Physics

The CAEN DT5790N is a digital acquisition system which houses two high voltage supplies and two highspeed (12bits, 250MHz) waveform (pulse digitizers. These in tandem with the use of post processing software combine to produce a Software Defined Electronics (SDE) system that can be used in several advanced teaching experiments. FPGAs and built-in software can be used to display the pulse waveform and produce a time-stamped output (4 ns intervals) in a text list for post processing, e.g via MATLAB, Python, LabView, ROOT, BASIC, etc. The SDE can than be reconfigured as neeeded and used to run many nuclear and other expermiments in an advances teaching lab course. This serves to expose students to modern state-of-the-art data acquisition technology. Experiments such as Fission Neutron, Time-of-Flight, Comptron Scattering, Co-60 Gamma Coincidence, Na-22 Gamma-Gamma Annighilation. Muon Lifetime, etc. are well suited for SDE. The SDE system also provides a very adaptive and cost-effective substitute for NIM or CAMAC electronics as SDE can be easily set up with only a single digitizer box and a computer for many different experiments. Typical data using the SDE application we have developed for several advanced teaching lab experiments will be shown. Several other digitizers similar to the CAEN unit are also available for SDE.

High School Students’ Water Cherenkov Detector

September 24th, 2021| |CAEN Experiments, Cosmic Rays, Particle Physics, Particle Physics

During last decade a lot of outreach activities were born to bring Science in the youths’ hearts through the study of elementary particles physics using frontier detectors. The aim of this project, i-SpeChe, is to develop a multipurpose prototype detector for a wide range of experiments from the study of natural radioactivity to cosmic rays flux using a SiPM matrix easily coupled to different scintillators or, to realize a Water Cherenkov Detector, to water tank. All the detectors used for outreach activities must be robust, easy to use and transport, LV based and economic. The choice is usually scintillator+ SiPM and this limits the knowledge of the wide range of existing detectors used in particles and astroparticle physics. Our effort is to realize a Cherenkov detector coupling water to a SiPM matrix. Cherenkov detectors are now found in a wide variety of unique applications throughout physics, astrophysics, and biomedicine, with more powerful, and larger devices continuing to be developed and implemented. Particular examples include the many detectors at particle accelerators for hadronic particle identification, the large water Cherenkov detectors used for neutrino detection both for astrophysics and accelerator studies, and the imaging air Cherenkov telescopes used to study very-high-energy γ rays in cosmic radiation. Most of the experiments based on Cherenkov effect in water use PMT. The use of SiPM coupled with water is still under study and i-SpeChe is the first approach for the realization of an outreach Water Cherenkov detector with SiPM.

Hands-on Photon Counting Statistics

Download printable version Difficult Execution Time Data Analysis Radioactive Sources No Gamma Hardware setup This experiment guide is referred to the SP5600E/AN Educational Kit. Equipment SP5600E/AN- Educational Kit Purpose of the experiment Statistical properties of the light pulses emitted by a LED driver. Fundamentals Spontaneous emission of light results from random decays of

Quantum Nature of Light

Download printable version Difficult Execution Time Data Analysis Radioactive Sources No Gamma Hardware setup This experiment guide is referred to the SP5600E/AN Educational Kit. Equipment SP5600E/AN- Educational Kit Purpose of the experiment Exploring the quantum nature of light thanks to bunches of photons emitted in a few nanoseconds by an ultra-fast LED and