All Community Experiments
CAEN Cosmic Hunter (Cariati)
Development and Construction of a Muon Telescope
All Community Experiments
Development and Construction of a Muon Telescope
Development and Construction of a Muon Telescope
Development and Construction of a Muon Telescope
Development and Construction of a Muon Telescope
Through the analysis of cosmic rays we can gain insights into cosmic phenomena and the laws that govern them - ICD 2024
A short review about portable didactic PET system for high-level education
In gamma spectra the energy, the intensity and the number of resolved photo peaks depend on the detector resolution and the background from physics processes. A widely used method for subtracting the background under a photopeak is provided by the Sensitive Nonlinear Iterative Peak (SNIP) algorithm. This paper reports a validation procedure of the SNIP algorithm, based on the invariance of the photo-peak area for different background levels.
The after-pulsing probability in Silicon Photomultipliers and its time constant are obtained measuring the mean number of photo-electrons in a variable time window following a light pulse. The method, experimentally simple and statistically robust due to the use of the Central Limit Theorem, has been applied to an HAMAMATSU MPPC S10362-11-100C.
Silicon Photo-Multipliers (SiPM) are state of the art light detectors with unprecedented single photon sensitivity and photon number resolving capability, representing a breakthrough in several fundamental and applied Science domains. An educational experiment based on a SiPM set-up is proposed in this article, guiding the student towards a comprehensive knowledge of this sensor technology while experiencing the quantum nature of light and exploring the statistical properties of the light pulses emitted by a LED
The EasyPET concept proposed here, protected under a patent by the University of Aveiro, aims to realize a simple and affordable small dimension Positron Emission Tomography (PET) scanner. This innovative system is based on a single pair of detectors and a rotating mechanism with two degrees of freedom reproducing the functionalities of an entire PET ring. A 2D imaging prototype has been designed, commissioned and engineered, targeted to high level education for physics, engineering and nuclear medicine students. In this paper the performance of the prototype is reported, with a focus on the imaging capability and on the measurement of the uncertainty in the reconstruction of the source position. In addition, a detailed analysis is dedicated to the slice sensitivity and in particular to the effect of the energy threshold on the coincidence event selection.